Wiener Processes and Itô's Lemma Chapter 12

0

Stochastic Processes

- A stochastic process describes the way a variable evolves over time that is at least in part random. i.e., temperature and IBM stock price.
- A stochastic process is defined by a probability law for the evolution of a variable x_t over time t. For given times, we can calculate the probability that the corresponding values x₁,x₂, x₃,etc., lie in some specified range.

Categorization of Stochastic Processes

Discrete time; discrete variable Random walk: X_t = X_{t-1} + E_t if E_t can only take on discrete values
Discrete time; continuous variable X_t = a + bX_{t-1} + E_t

 \mathcal{E}_t is a normally distributed random variable with zero mean.

- Continuous time; discrete variable
- Continuous time; continuous variable

Modeling Stock Prices

• We can use any of the four types of stochastic processes to model stock prices

• The continuous time, continuous variable process proves to be the most useful for the purposes of valuing derivatives

Markov Processes (See pages 259-60)

- In a Markov process future movements in a variable depend only on where we are, not the history of how we got where we are.
- We assume that stock prices follow Markov processes.

Weak-Form Market Efficiency

- This asserts that it is impossible to produce consistently superior returns with a trading rule based on the past history of stock prices. In other words technical analysis does not work.
- A Markov process for stock prices is consistent with weak-form market efficiency

Example of a Discrete Time Continuous Variable Model

- A stock price is currently at \$40
- At the end of 1 year it is considered that it will have a normal probability distribution of with mean \$40 and standard deviation \$10

Questions

- What is the probability distribution of the stock price at the end of 2 years?
 - ¹/₂ years?
 - ¹/₄ years?
 - Δt years?

Taking limits we have defined a continuous variable, continuous time process

Variances & Standard Deviations

- In Markov processes changes in successive periods of time are independent
- This means that variances are additive
- Standard deviations are not additive

Variances & Standard Deviations (continued)

- In our example it is correct to say that the variance is 100 per year.
- It is strictly speaking not correct to say that the standard deviation is 10 per year.

A Wiener Process (See pages 261-63)

- We consider a variable *z* whose value changes continuously
- Define $\phi(\mu, v)$ as a normal distribution with mean μ and variance v
- The change in a small interval of time Δt is Δz
- The variable follows a Wiener process if
 - $\Delta z = \varepsilon \sqrt{\Delta t}$ where ε is $\varphi(0,1)$

0

The values of Δz for any 2 different (non-overlapping) periods of time are independent

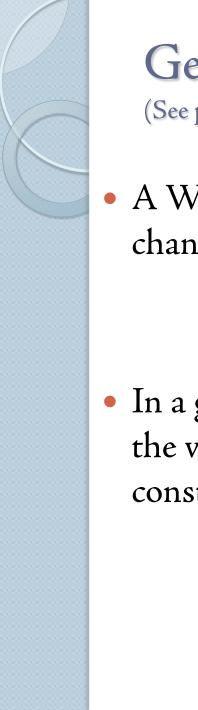
$$z(T) - z(0) = \sum_{i=1}^{n} \mathcal{E}_{i} \sqrt{\Delta t}$$

- Mean of [z(T) z(0)] is 0
- Variance of [z(T) z(0)] is T
- Standard deviation of [z(T) z(0)] is \sqrt{T}

Taking Limits ...

 $dz = \varepsilon \sqrt{dt}$

- What does an expression involving *dz* and *dt* mean?
- It should be interpreted as meaning that the corresponding expression involving Δz and Δt is true in the limit as Δt tends to zero
- In this respect, stochastic calculus is analogous to ordinary calculus



Generalized Wiener Processes (See page 263-65)

• A Wiener process has a drift rate (i.e. average change per unit time) of 0 and a variance rate of 1

• In a generalized Wiener process the drift rate and the variance rate can be set equal to any chosen constants

Generalized Wiener Processes (continued)

The variable *x* follows a generalized Wiener process with a drift rate of *a* and a variance rate of b^2 if dx=adt+bdzor: $x(t)=x_0+at+bz(t)$

$$\Delta x = a\Delta t + b\mathcal{E}\sqrt{\Delta t}$$

- Mean change in x in time T is aT
- Variance of change in x in time T is b^2T
- Standard deviation of change in x in time T is $b\sqrt{T}$

The Example Revisited

- A stock price starts at 40 and has a probability distribution of $\phi(40,100)$ at the end of the year
- If we assume the stochastic process is Markov with no drift then the process is

$$dS = 10dz$$

• If the stock price were expected to grow by \$8 on average during the year, so that the year-end distribution is f(48,100), the process would be

$$dS = 8dt + 10dz$$

Why $b\sqrt{\Delta t} ?(1)$

- It's the only way to make the variance of (x_T-x₀)depend on T and not on the number of steps.
- 1.Divide time up into n discrete periods of length Δt , $n=T/\Delta t$. In each period the variable x either moves up or down by an amount Δb with the probabilities of p and q respectively.

Why $b\sqrt{\Delta t}$?(2)

2. The distribution for the future values of x: $E(\triangle x)=(p-q) \triangle h$ $E[(\triangle x)^{2}]=p(\triangle h)^{2}+q(-\triangle h)^{2}$ So, the variance of $\triangle x$ is: $E[(\triangle x)^{2}]-[E(\triangle x)]^{2}=[1-(p-q)^{2}](\triangle h)^{2}$ 3. Since the successive steps of the random walk are

independent, the cumulated change $(x_T - x_0)$ is a binomial random walk with mean:

 $n(p-q) \triangle h = T(p-q) \triangle h / \triangle t$ and variance:

 $n[1\text{-}(p\text{-}q)^2](\triangle h)^2 \text{=} T \ [1\text{-}(p\text{-}q)^2](\triangle h)^2 \ / \ \triangle t$

Why $b\sqrt{\Delta t}$?(3)

- When let $\triangle t$ go to zero, we would like the mean and variance of $(x_T \cdot x_0)$ to remain unchanged, and to be independent of the particular choice of p,q, $\triangle h$ and $\triangle t$.
- The only way to get it is to set:

$$\Delta b = b\sqrt{\Delta t}$$

$$p = \frac{1}{2} \left[1 + \frac{a}{b}\sqrt{\Delta t}\right], q = \frac{1}{2} \left[1 - \frac{a}{b}\sqrt{\Delta t}\right]$$

$$p - q = \frac{a}{b}\sqrt{\Delta t} = \frac{a}{b^2}\Delta b$$

Why $b\sqrt{\Delta t}$?(4)

When △t goes to zero, the binomial distribution converges to a normal distribution, with mean

$$t\frac{a}{b^2}\Delta b\frac{\Delta b}{\Delta t} = at$$

and variance

$$t[1-(\frac{a}{b})^2\Delta t]\frac{b^2\Delta t}{\Delta t} \to b^2 t$$

Sample path(a=0.2 per year,b²=1.0 per year)

Taking a time interval of one month, then calculating a trajectory for x_t using the equation:

 $x_{t} = x_{t-1} + 0.01667 + 0.2887\varepsilon_{t}$

A trend of 0.2 per year implies a trend of 0.0167 per month. A variance of 1.0 per year implies a variance of 0.0833 per month, so that the standard deviation in monthly terms is 0.2887.

See Investment under uncertainty, p66

Forecast using generalized Brownian Motion

 Given the value of x(t) for Dec. 1974, X₁₉₇₄, the forecasted value of x for a time T months beyond Dec. 1974 is given by:

$$\hat{x}_{0,74+T} = 667x_{1974} + T$$

See Investment under uncertainty, p67

• In the long run, the trend is the dominant determinant of Brownian Motion, whereas in the short run, the volatility of the process dominates.

Why a Generalized Wiener Process Is Not Appropriate for Stocks

- The price of a stock never fall below zero.
- For a stock price we can conjecture that its expected percentage change in a short period of time remains constant, not its expected absolute change in a short period of time
- We can also conjecture that our uncertainty as to the size of future stock price movements is proportional to the level of the stock price

Itô Process (See pages 265)

• In an Itô process the drift rate and the variance rate are functions of time

dx = a(x,t)dt + b(x,t)dz

$$x(t) = x_0 + \int_0^t a(x,t) ds + \int_0^t b(x,t) dz$$

• The discrete time equivalent

$$\Delta x = a(x,t)\Delta t + b(x,t)\varepsilon\sqrt{\Delta t}$$

is only true in the limit as Δt tends to zero

An Ito Process for Stock Prices (See pages 269-71)

 $dS = \mu S \, dt + \sigma S \, dz$

where μ is the expected return, σ is the volatility.

• The discrete time equivalent is

 $\Delta S = \mu S \Delta t + \sigma S \varepsilon \sqrt{\Delta t}$

Monte Carlo Simulation

- We can sample random paths for the stock price by sampling values for ε
- Suppose μ = 0.15, σ = 0.30, and Δt = 1 week (=1/52 years), then

 $\Delta S = 0.00288S + 0.0416S\varepsilon$

Monte Carlo Simulation – One Path (See Table 12.1, page 268)

Week	Stock Price at Start of Period	Random Sample for 🗌	Change in Stock Price, □S
0	100.00	0.52	2.45
1	102.45	1.44	6.43
2	108.88	-0.86	-3.58
3	105.30	1.46	6.70
4	112.00	-0.69	-2.89

Itô's Lemma (See pages 269-270)

- If we know the stochastic process followed by *x*, Itô's lemma tells us the stochastic process followed by some function *G* (*x*, *t*)
- Since a derivative is a function of the price of the underlying and time, Itô's lemma plays an important part in the analysis of derivative securities

Taylor Series Expansion

• A Taylor's series expansion of G(x, t) gives

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} \Delta x^2 + \frac{\partial^2 G}{\partial x \partial t} \Delta x \Delta t + \frac{\partial^2 G}{\partial t^2} \Delta t^2 + \dots$$

In ordinary calculus we have

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t$$

In stochastic calculus this becomes

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{\partial}{\partial t} \Delta t + \frac{\partial}{\partial x^2} \Delta x^2$$

because Δx has a component which is of order $\sqrt{\Delta t}$

Substituting for Δx

Suppose

$$dx = a(x,t)dt + b(x,t)dz$$

so that

 $\Delta x = a \Delta t + b \ \varepsilon \sqrt{\Delta t}$

Then ignoring terms of higher order than Δt

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{\partial^2 G}{\partial x^2} b^2 \varepsilon^2 \Delta t$$

The $\varepsilon^2 \Delta t$ Term

Since $\varepsilon \sim \varphi(0,1)$, $E(\varepsilon) = 0$ $E(\varepsilon^2) - [E(\varepsilon)]^2 = 1$ $E(\varepsilon^2) = 1$ It follows that $E(\varepsilon^2 \Delta t) = \Delta t$ The variance of Δt is proportional to Δt^2 and can be ignored. Hence,

$$\Delta G = \frac{\partial G}{\partial x} \Delta x + \frac{\partial G}{\partial t} \Delta t + \frac{1}{2} \frac{\partial^2 G}{\partial x^2} b^2 \Delta t$$

Taking Limits

Taking limits:

$$dG = \frac{\partial G}{\partial x} dx + \frac{\partial G}{\partial t} dt + \frac{\partial}{\partial t} \frac{\partial^2 G}{\partial x^2} b^2 dt$$

Substituting:

 $dx = a \, dt + b \, dz$

We obtain:

$$dG = \left(\frac{\partial G}{\partial x}a + \frac{\partial G}{\partial t} + \frac{\partial}{\partial x}b^2\right)dt + \frac{\partial G}{\partial x}b dz$$

This is Itô's Lemma

Application of Ito's Lemma to a Stock Price Process

The stock price process is $dS = \mu S dt + \sigma S dz$ For a function G of S and t

$$dG = \left(\frac{\partial G}{\partial S}\mu S + \frac{\partial G}{\partial t} + \frac{\partial G}{\partial S^2}\sigma^2 S^2\right)dt + \frac{\partial G}{\partial S}\sigma S dz$$

Examples

1. The forward price of a stock for a contract maturing at time T $G = S \ e^{r(T-t)}$ $dG = (\mu - r)G \ dt + \sigma G \ dz$

2. $G = \ln S$

$$dG = \left(\mu - \frac{\sigma^2}{2}\right)dt + \sigma \, dz$$

Ito's Lemma for several Ito processes

• Suppose $F = F(x_1, x_2, ..., x_m, t)$ is a function of time and of the m Ito process $x_1, x_2, ..., x_m$, where

 $dx_{i} = a_{i}(x_{1}, x_{2}, ..., x_{m}, t)dt + b_{i}(x_{1}, x_{2}, ..., x_{m}, t)dz_{i}, i = 1, 2, ..., m$

with $E(dz_i dz_j) = \rho_{ij} dt$

• Then Ito's Lemma gives the differential dF as

$$dF = \frac{\partial F}{\partial t}dt + \sum_{i} \frac{\partial F}{\partial x_{i}}dx_{i} + \frac{1}{2}\sum_{i} \sum_{j} \frac{\partial^{2} F}{\partial x_{i}\partial x_{j}}dx_{i}dx_{j}$$

Examples

• Suppose F(x,y)=xy, where x and y each follow geometric Brownian motions:

$$dx = a_x x dt + b_x x dz_x$$
$$dy = a_y y dt + b_y y dz_y$$

with $E(dz_i dz_j) = \rho_{ij} dt$.

What's the process followed by F(x,y) and by $G=\log F$?

$$dF = xdy + ydx + dxdy$$

= $(a_x + a_y + \rho b_x b_y)Fdt + (b_x dz_x + b_y dz_y)F$
$$dG = \left(a_x + a_y - \frac{1}{2}b_x^2 - \frac{1}{2}b_y^2\right)dt + b_x dz_x + b_y dz_y$$