
Wiener Processes and Itô’s Lemma
Chapter 12
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Stochastic Processes
 A stochastic process describes the way a variable evolves 

over time that is at least in part random. i.e., temperature 
and IBM stock price.

 A stochastic process is defined by a probability law for 
the evolution of a variable xt over time t. For given times, 
we can calculate the probability that the corresponding 
values x1,x2, x3,etc., lie in some specified range.
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Categorization of Stochastic Processes

 Discrete time;  discrete variable
Random walk: 

if       can only take on discrete values
 Discrete time;  continuous variable

is a normally distributed random variable with zero 
mean.

 Continuous time;  discrete variable
 Continuous time;  continuous variable

ttt xx ε+= −1

ttt bxax ε++= −1

tε
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Modeling Stock Prices

 We can use any of the four types of stochastic 
processes to model stock prices

 The continuous time, continuous variable process 
proves to be the most useful for the purposes of 
valuing derivatives
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Markov Processes (See pages 259-60)

 In a Markov process future movements in a 
variable depend only on where we are, not the 
history of how we got where we are.

 We assume that stock prices follow Markov 
processes.
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Weak-Form Market Efficiency

 This asserts that it is impossible  to produce 
consistently superior returns with a trading rule 
based on the past history of stock prices. In other 
words technical analysis does not work.

 A Markov process for stock prices is consistent  
with weak-form market efficiency
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Example of a Discrete Time 
Continuous Variable  Model

 A stock price is currently at $40

 At the end of 1 year it is considered that it will have 
a normal probability distribution of with mean $40 
and standard deviation $10
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Questions
 What is the probability distribution of the 

stock price at the end of 2 years?
◦ ½ years?
◦ ¼ years?
◦ ∆t years?

Taking limits  we have defined a continuous 
variable, continuous time  process
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Variances & Standard Deviations

 In Markov processes changes in successive periods 
of time are independent

 This means that variances are additive
 Standard deviations are not additive
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Variances & Standard Deviations 
(continued)

 In our example it is correct  to say that the 
variance is 100 per year.

 It is strictly speaking not correct  to say that the 
standard deviation is 10  per year.
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A Wiener Process (See pages 261-63)

 We consider a variable z whose value changes 
continuously 

 Define φ(µ,v) as a normal distribution with mean µ
and variance v

 The change in a small interval of time ∆t is ∆z
 The variable follows a Wiener process if
◦
◦ The values of ∆z for any 2 different (non-overlapping) 

periods of time are independent

z tε ε ϕ∆ = ∆     (0,1) where is
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Properties of a Wiener Process

 Mean of  [z (T ) – z (0)]  is 0
 Variance of  [z (T ) – z (0)]  is T
 Standard deviation of [z (T ) – z (0)]  is T

1
( ) (0)

n

i
i

z T z tε
=

− = ∆∑
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Taking Limits . . .

 What does an expression involving dz and dt
mean?

 It should be interpreted as meaning that the 
corresponding expression involving ∆z  and ∆t is 
true in the limit  as ∆t tends to zero

 In this respect, stochastic calculus is analogous  to 
ordinary calculus

dz dtε=
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Generalized Wiener Processes
(See page 263-65)

 A Wiener process has a drift rate (i.e. average 
change per unit time) of 0 and a variance rate of 1

 In a generalized Wiener process the drift rate and 
the variance rate can be set equal to any chosen 
constants
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Generalized Wiener Processes
(continued)

The variable x follows a generalized Wiener process 
with a drift rate of a and a variance rate of b2 if  

dx=adt+bdz
or: x(t)=x0+at+bz(t)
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Generalized Wiener Processes
(continued)

 Mean change in x in time T is aT
 Variance of change in x in time T is b2T
 Standard deviation of change in x in time T is b T

x a t b tε∆ = ∆ + ∆
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The Example Revisited
 A stock price starts at 40 and has a probability 

distribution of φ(40,100) at the end  of the year
 If we assume the stochastic process is Markov with no 

drift  then the process is 
dS  = 10dz 

 If the stock price were expected to grow by $8 on average 
during the year, so that the year-end distribution is 
f(48,100), the process would be 

dS = 8dt + 10dz



Why         ?(1)

 It’s the only way to make the variance of
(xT-x0)depend on T and not on the number of 

steps.
1.Divide time up into n discrete periods of 

length △t, n=T/△t. In each period the 
variable x either moves up or down by an 
amount △h with the probabilities of p and q 
respectively.
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Why        ?(2)

2.The distribution for the future values of x:
E(△x)=(p-q) △h
E[(△x)2]= p(△h)2+q(-△h)2

So, the variance of △ x is:
E[(△x)2]-[E(△x)]2=[1-(p-q)2](△h)2

3. Since the successive steps of the random walk are 
independent, the cumulated change(xT-x0)is a binomial 
random walk with mean:

n(p-q) △h=T(p-q) △h/ △t
and variance: 

n[1-(p-q)2](△h)2= T [1-(p-q)2](△h)2 / △t
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Why       ?(3)
 When let △t go to zero, we would like the mean and 

variance of (xT-x0) to remain unchanged, and to be 
independent of the particular choice of p,q, △h and △t.

 The only way to get it is to set:
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2

1 1[1 ], [1 ]2 2

h b t
a a

p t q t
b b

a a
p q t h

b b

∆ = ∆

= + ∆ = − ∆

− = ∆ = ∆



Why       ?(4)

 When △t goes to zero, the binomial 
distribution converges to a normal 
distribution, with mean

and variance 
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b t∆

2

a h
t h at
b t

∆
∆ =

∆

2
2 2[1 ( ) ]a b t

t t b t
b t

∆
− ∆ →

∆



Sample path(a=0.2 per year,b2=1.0 per year)

 Taking a time interval of one month, then 
calculating a trajectory for xt using the 
equation:

A trend of 0.2 per year implies a trend of 
0.0167 per month. A variance of 1.0 per year 
implies a variance of 0.0833 per month, so 
that the standard deviation in monthly terms 
is 0.2887.

See Investment under uncertainty, p66

1 0.01667 0.2887t t tx x ε−= + +



Forecast using generalized Brownian Motion

 Given the value of x(t)for Dec. 1974, X1974 , 
the forecasted value of x for a time T months 
beyond Dec. 1974 is given by:

See Investment under uncertainty, p67
 In the long run, the trend is the dominant 

determinant of Brownian Motion, whereas 
in the short run, the volatility of the process 
dominates.

1974 1974ˆ0.01667Tx x T+ = +
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Why a Generalized Wiener Process Is 
Not Appropriate for Stocks

 The price of a stock never fall below zero.

 For a stock price we can conjecture that its expected 
percentage change in a short period of time remains 
constant, not its expected absolute change in a short 
period of time

 We can also conjecture that our uncertainty as to the 
size of future stock price movements is proportional 
to the level of the stock price



25

Itô Process (See pages 265)

 In an Itô process the drift rate and the variance 
rate are functions of time

 The discrete time equivalent

is only true in the limit as ∆t tends to zero
( , ) ( , )x a x t t b x t tε∆ = ∆ + ∆

( ) ( )0
0 0

( , ) ( , )

( ) , ,
t t

dx a x t dt b x t dz

x t x a x t ds b x t dz

= +

= + +∫ ∫
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An Ito Process for Stock Prices
(See pages 269-71)

where µ is the expected return, σ is the 
volatility.

 The discrete time equivalent is

      dS S dt S dzµ σ= +

         S S t S tµ σ ε∆ = ∆ + ∆
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Monte Carlo Simulation

 We can sample random paths for the stock price 
by sampling values for ε

 Suppose µ= 0.15, σ= 0.30, and ∆t = 1 week 
(=1/52 years), then

 0.00288 0.0416S S Sε∆ = +
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Monte Carlo Simulation – One Path (See Table 
12.1, page 268)

 

 
Week 

Stock Price at 
Start of Period  

Random  
Sample for  

Change in Stock  
Price, S 

0 100.00 0.52 2.45 

1 102.45 1.44 6.43 

2 108.88 -0.86 -3.58 

3 105.30 1.46 6.70 

4 112.00 -0.69 -2.89 
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Itô’s Lemma (See pages 269-270)

 If we know the stochastic process followed 
by x, Itô’s lemma tells us the stochastic 
process followed by some function G (x, t )

 Since a derivative is a function of the price 
of the underlying and time, Itô’s lemma 
plays an important part in the analysis of 
derivative securities
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Taylor Series Expansion

 A Taylor’s series expansion of G(x, t) gives

2
2

2

2 2
2

2

½

         ?

G G G
G x t x

x t x
G G

x t t
x t t

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂

∆ = ∆ + ∆ + ∆

+ ∆ ∆ + ∆ +
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Ignoring Terms of Higher Order Than ∆t

G G
G x t

x t

G G G
G x t x

x t x

x t

∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∆ = ∆ + ∆

∆ = ∆ + ∆ + ∆

∆ ∆

2
2

2

In ordinary calculus we have

         

 In stochastic calculus this becomes

         ?

because   has a component which is of order 
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Substituting for ∆x

2
2 2

2

dx a x t dt b x t dz

x a t b t
t

G G G
G x t b t

x t x

ε

∂ ∂ ∂ ε
∂ ∂ ∂

= +

∆ ∆ ∆
∆

∆ = ∆ + ∆ + ∆

Suppose 

      ( , ) ( , )

so that

      = +        

Then ignoring terms of higher order than 

      ?
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The ε2∆t Term

2 2

2

2

2
2

2

(0,1) , ( ) 0
( ) [ ( )] 1
( ) 1
( )

1
2

E

E E

E

E t t

t t

G G G
G x t b t

x t x

ε ϕ ε

ε ε

ε

ε

∂ ∂ ∂
∂ ∂ ∂

=

− =

=

∆ = ∆

∆ ∆

∆ = ∆ + ∆ + ∆



2

Since  

It follows that 

The variance of  is proportional to and can  be ignored. 

Hence,
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Taking Limits

2
2

2

2
2

2

ˆ

G G G
dG dx dt b dt

x t x
dx a dt b dz

G G G G
dG a b dt b dz

x t x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + +

= +

 
= + + + 
 

Taking limits:     ?

Substituting:         

We obtain:          ? 

                          This is Ito's Lemma
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Application of Ito’s Lemma
to a Stock Price Process

d S S dt S d z
G S t

G G G G
dG S S dt S dz

S t S S

µ σ

∂ ∂ ∂ ∂
µ σ σ

∂ ∂ ∂ ∂

= +

 
= + + + 
 

2
2 2

2

The stock price process  is

            

For a function   of    and  

        ? 
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Examples

r T t

T

G S e
dG r G dt G dz

G S

dG dt dz

µ σ

σµ σ

−=
= − +

=

 
= − + 
 

( )

2

1.  The forward price of a stock for a contract 

     maturing at time 

                    

              ( )   

2. ln

               
2



Ito’s Lemma for several Ito processes

 Suppose                                   is a function of 
time and of the m Ito process x1,x2,…,xm,
where 

with 
 Then Ito’s Lemma gives the differential dF as
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( ) ( )i i m i m idx a x x x t dt b x x x t dz i m= + =1 2 1 2, , ..., , , , ..., , , 1,2,...,

( )mF F x x x t= 1 2, , ..., ,

( )i j ijE dz dz dtρ=

i i j
i i ji i j

F F F
dF dt dx dx dx

t x x x
∂ ∂ ∂

= + +
∂ ∂ ∂ ∂∑ ∑∑

21
2



Examples

 Suppose F(x,y)=xy, where x and y each follow geometric 
Brownian motions:

with                          .
 What’s  the process followed by F(x,y) and by G=logF?
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x x x

y y y

dx a xdt b xdz
dy a ydt b ydz

= +
= +

( )i j ijE dz dz dtρ=

( ) ( )x y x y x x y y

x y x y x x y y

dF xdy ydx dxdy

a a b b Fdt b dz b dz F

dG a a b b dt b dz b dz

ρ

= + +

= + + + +

 = + − − + + 
 

2 21 1
2 2
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