
Wiener Processes and Itô’s Lemma
Chapter 12
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Stochastic Processes
 A stochastic process describes the way a variable evolves 

over time that is at least in part random. i.e., temperature 
and IBM stock price.

 A stochastic process is defined by a probability law for 
the evolution of a variable xt over time t. For given times, 
we can calculate the probability that the corresponding 
values x1,x2, x3,etc., lie in some specified range.
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Categorization of Stochastic Processes

 Discrete time;  discrete variable
Random walk: 

if       can only take on discrete values
 Discrete time;  continuous variable

is a normally distributed random variable with zero 
mean.

 Continuous time;  discrete variable
 Continuous time;  continuous variable

ttt xx ε+= −1

ttt bxax ε++= −1

tε
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Modeling Stock Prices

 We can use any of the four types of stochastic 
processes to model stock prices

 The continuous time, continuous variable process 
proves to be the most useful for the purposes of 
valuing derivatives
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Markov Processes (See pages 259-60)

 In a Markov process future movements in a 
variable depend only on where we are, not the 
history of how we got where we are.

 We assume that stock prices follow Markov 
processes.



6

Weak-Form Market Efficiency

 This asserts that it is impossible  to produce 
consistently superior returns with a trading rule 
based on the past history of stock prices. In other 
words technical analysis does not work.

 A Markov process for stock prices is consistent  
with weak-form market efficiency
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Example of a Discrete Time 
Continuous Variable  Model

 A stock price is currently at $40

 At the end of 1 year it is considered that it will have 
a normal probability distribution of with mean $40 
and standard deviation $10
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Questions
 What is the probability distribution of the 

stock price at the end of 2 years?
◦ ½ years?
◦ ¼ years?
◦ ∆t years?

Taking limits  we have defined a continuous 
variable, continuous time  process
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Variances & Standard Deviations

 In Markov processes changes in successive periods 
of time are independent

 This means that variances are additive
 Standard deviations are not additive
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Variances & Standard Deviations 
(continued)

 In our example it is correct  to say that the 
variance is 100 per year.

 It is strictly speaking not correct  to say that the 
standard deviation is 10  per year.
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A Wiener Process (See pages 261-63)

 We consider a variable z whose value changes 
continuously 

 Define φ(µ,v) as a normal distribution with mean µ
and variance v

 The change in a small interval of time ∆t is ∆z
 The variable follows a Wiener process if
◦
◦ The values of ∆z for any 2 different (non-overlapping) 

periods of time are independent

z tε ε ϕ∆ = ∆     (0,1) where is
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Properties of a Wiener Process

 Mean of  [z (T ) – z (0)]  is 0
 Variance of  [z (T ) – z (0)]  is T
 Standard deviation of [z (T ) – z (0)]  is T

1
( ) (0)

n

i
i

z T z tε
=

− = ∆∑
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Taking Limits . . .

 What does an expression involving dz and dt
mean?

 It should be interpreted as meaning that the 
corresponding expression involving ∆z  and ∆t is 
true in the limit  as ∆t tends to zero

 In this respect, stochastic calculus is analogous  to 
ordinary calculus

dz dtε=
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Generalized Wiener Processes
(See page 263-65)

 A Wiener process has a drift rate (i.e. average 
change per unit time) of 0 and a variance rate of 1

 In a generalized Wiener process the drift rate and 
the variance rate can be set equal to any chosen 
constants
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Generalized Wiener Processes
(continued)

The variable x follows a generalized Wiener process 
with a drift rate of a and a variance rate of b2 if  

dx=adt+bdz
or: x(t)=x0+at+bz(t)
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Generalized Wiener Processes
(continued)

 Mean change in x in time T is aT
 Variance of change in x in time T is b2T
 Standard deviation of change in x in time T is b T

x a t b tε∆ = ∆ + ∆
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The Example Revisited
 A stock price starts at 40 and has a probability 

distribution of φ(40,100) at the end  of the year
 If we assume the stochastic process is Markov with no 

drift  then the process is 
dS  = 10dz 

 If the stock price were expected to grow by $8 on average 
during the year, so that the year-end distribution is 
f(48,100), the process would be 

dS = 8dt + 10dz



Why         ?(1)

 It’s the only way to make the variance of
(xT-x0)depend on T and not on the number of 

steps.
1.Divide time up into n discrete periods of 

length △t, n=T/△t. In each period the 
variable x either moves up or down by an 
amount △h with the probabilities of p and q 
respectively.
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Why        ?(2)

2.The distribution for the future values of x:
E(△x)=(p-q) △h
E[(△x)2]= p(△h)2+q(-△h)2

So, the variance of △ x is:
E[(△x)2]-[E(△x)]2=[1-(p-q)2](△h)2

3. Since the successive steps of the random walk are 
independent, the cumulated change(xT-x0)is a binomial 
random walk with mean:

n(p-q) △h=T(p-q) △h/ △t
and variance: 

n[1-(p-q)2](△h)2= T [1-(p-q)2](△h)2 / △t
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Why       ?(3)
 When let △t go to zero, we would like the mean and 

variance of (xT-x0) to remain unchanged, and to be 
independent of the particular choice of p,q, △h and △t.

 The only way to get it is to set:
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b t∆
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1 1[1 ], [1 ]2 2

h b t
a a

p t q t
b b

a a
p q t h

b b

∆ = ∆

= + ∆ = − ∆

− = ∆ = ∆



Why       ?(4)

 When △t goes to zero, the binomial 
distribution converges to a normal 
distribution, with mean

and variance 
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∆



Sample path(a=0.2 per year,b2=1.0 per year)

 Taking a time interval of one month, then 
calculating a trajectory for xt using the 
equation:

A trend of 0.2 per year implies a trend of 
0.0167 per month. A variance of 1.0 per year 
implies a variance of 0.0833 per month, so 
that the standard deviation in monthly terms 
is 0.2887.

See Investment under uncertainty, p66

1 0.01667 0.2887t t tx x ε−= + +



Forecast using generalized Brownian Motion

 Given the value of x(t)for Dec. 1974, X1974 , 
the forecasted value of x for a time T months 
beyond Dec. 1974 is given by:

See Investment under uncertainty, p67
 In the long run, the trend is the dominant 

determinant of Brownian Motion, whereas 
in the short run, the volatility of the process 
dominates.

1974 1974ˆ0.01667Tx x T+ = +
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Why a Generalized Wiener Process Is 
Not Appropriate for Stocks

 The price of a stock never fall below zero.

 For a stock price we can conjecture that its expected 
percentage change in a short period of time remains 
constant, not its expected absolute change in a short 
period of time

 We can also conjecture that our uncertainty as to the 
size of future stock price movements is proportional 
to the level of the stock price
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Itô Process (See pages 265)

 In an Itô process the drift rate and the variance 
rate are functions of time

 The discrete time equivalent

is only true in the limit as ∆t tends to zero
( , ) ( , )x a x t t b x t tε∆ = ∆ + ∆

( ) ( )0
0 0

( , ) ( , )

( ) , ,
t t

dx a x t dt b x t dz

x t x a x t ds b x t dz

= +

= + +∫ ∫
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An Ito Process for Stock Prices
(See pages 269-71)

where µ is the expected return, σ is the 
volatility.

 The discrete time equivalent is

      dS S dt S dzµ σ= +

         S S t S tµ σ ε∆ = ∆ + ∆
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Monte Carlo Simulation

 We can sample random paths for the stock price 
by sampling values for ε

 Suppose µ= 0.15, σ= 0.30, and ∆t = 1 week 
(=1/52 years), then

 0.00288 0.0416S S Sε∆ = +
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Monte Carlo Simulation – One Path (See Table 
12.1, page 268)

 

 
Week 

Stock Price at 
Start of Period  

Random  
Sample for  

Change in Stock  
Price, S 

0 100.00 0.52 2.45 

1 102.45 1.44 6.43 

2 108.88 -0.86 -3.58 

3 105.30 1.46 6.70 

4 112.00 -0.69 -2.89 
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Itô’s Lemma (See pages 269-270)

 If we know the stochastic process followed 
by x, Itô’s lemma tells us the stochastic 
process followed by some function G (x, t )

 Since a derivative is a function of the price 
of the underlying and time, Itô’s lemma 
plays an important part in the analysis of 
derivative securities
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Taylor Series Expansion

 A Taylor’s series expansion of G(x, t) gives

2
2

2

2 2
2

2

½

         ?

G G G
G x t x

x t x
G G

x t t
x t t

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂ ∂

∆ = ∆ + ∆ + ∆

+ ∆ ∆ + ∆ +
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Ignoring Terms of Higher Order Than ∆t

G G
G x t

x t

G G G
G x t x

x t x

x t

∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∆ = ∆ + ∆

∆ = ∆ + ∆ + ∆

∆ ∆

2
2

2

In ordinary calculus we have

         

 In stochastic calculus this becomes

         ?

because   has a component which is of order 
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Substituting for ∆x

2
2 2

2

dx a x t dt b x t dz

x a t b t
t

G G G
G x t b t

x t x

ε

∂ ∂ ∂ ε
∂ ∂ ∂

= +

∆ ∆ ∆
∆

∆ = ∆ + ∆ + ∆

Suppose 

      ( , ) ( , )

so that

      = +        

Then ignoring terms of higher order than 

      ?
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The ε2∆t Term

2 2

2

2

2
2

2

(0,1) , ( ) 0
( ) [ ( )] 1
( ) 1
( )

1
2

E

E E

E

E t t

t t

G G G
G x t b t

x t x

ε ϕ ε

ε ε

ε

ε
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=

− =

=

∆ = ∆

∆ ∆

∆ = ∆ + ∆ + ∆



2

Since  

It follows that 

The variance of  is proportional to and can  be ignored. 

Hence,
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Taking Limits

2
2

2

2
2

2

ˆ

G G G
dG dx dt b dt

x t x
dx a dt b dz

G G G G
dG a b dt b dz

x t x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + +

= +

 
= + + + 
 

Taking limits:     ?

Substituting:         

We obtain:          ? 

                          This is Ito's Lemma
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Application of Ito’s Lemma
to a Stock Price Process

d S S dt S d z
G S t

G G G G
dG S S dt S dz

S t S S

µ σ

∂ ∂ ∂ ∂
µ σ σ

∂ ∂ ∂ ∂

= +

 
= + + + 
 

2
2 2

2

The stock price process  is

            

For a function   of    and  

        ? 
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Examples

r T t

T

G S e
dG r G dt G dz

G S

dG dt dz

µ σ

σµ σ

−=
= − +

=

 
= − + 
 

( )

2

1.  The forward price of a stock for a contract 

     maturing at time 

                    

              ( )   

2. ln

               
2



Ito’s Lemma for several Ito processes

 Suppose                                   is a function of 
time and of the m Ito process x1,x2,…,xm,
where 

with 
 Then Ito’s Lemma gives the differential dF as
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( ) ( )i i m i m idx a x x x t dt b x x x t dz i m= + =1 2 1 2, , ..., , , , ..., , , 1,2,...,

( )mF F x x x t= 1 2, , ..., ,

( )i j ijE dz dz dtρ=

i i j
i i ji i j

F F F
dF dt dx dx dx

t x x x
∂ ∂ ∂

= + +
∂ ∂ ∂ ∂∑ ∑∑
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Examples

 Suppose F(x,y)=xy, where x and y each follow geometric 
Brownian motions:

with                          .
 What’s  the process followed by F(x,y) and by G=logF?
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x x x

y y y

dx a xdt b xdz
dy a ydt b ydz

= +
= +

( )i j ijE dz dz dtρ=

( ) ( )x y x y x x y y

x y x y x x y y

dF xdy ydx dxdy

a a b b Fdt b dz b dz F

dG a a b b dt b dz b dz

ρ

= + +

= + + + +

 = + − − + + 
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