A Test for Multivariate Normality in Stock Returns

Matthew Richardson, Tom Smith

Journal of Business, Volume 66, Issue 2 (Apr., 1993), 295-321.

Your use of the JSTOR database indicates your acceptance of JISTOR’s Terms and Conditions of Use. A copy of
JSTOR’s Terms and Conditions of Use is available at http://www.jstor.org/about/terms.html, by contacting JSTOR
at jstor-info@umich.edu, or by calling JSTOR at (888)388-3574, (734)998-9101 or (FAX) (734)998-9113. No part
of a JSTOR transmission may be copied, downloaded, stored, further transmitted, transferred, distributed, altered, or
otherwise used, in any form or by any means, except: (1) one stored electronic and one paper copy of any article
solely for your personal, non-commercial use, or (2) with prior written permission of JSTOR and the publisher of
the article or other text.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Journal of Business 1is published by University of Chicago Press. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/ucpress.html.

Journal of Business
©1993 University of Chicago Press

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2001 JSTOR

http://www.jstor.org/
Tue May 8 17:51:21 2001



Matthew Richardson

University of Pennsylvania

Tom Smith

Duke University

A Test for Multivariate
Normality in Stock Returns*

I. Introduction

A standard assumption in theoretical and empiri-
cal research in finance is that relevant variables
(e.g., stock returns) have multivariate normal
distributions. For example, in tests of mean-
variance efficiency, small sample results have
been derived under this assumption (see Mac-
Kinlay 1987; Gibbons, Ross, and Shanken 1989).
Moreover, justification for a number of asset
pricing models has its roots in the multivariate
normal assumption. Perhaps not surprisingly
then, there has been considerable focus on
whether this assumption is appropriate. (Please
see Fama [1965, 1976]; Blume [1968]; Officer
[1971]; Clark [1973]; Harris [1986]; Bookstaber
and McDonald [1987]; and Affleck-Graves and
McDonald [1989] for examples of this literature.)
With respect to stock returns, the conclusion
generally has been that returns are not normally
distributed, putting into doubt results that rely
heavily on this assumption.

These conclusions, however, are based on uni-
variate tests of normality. For example, Fama
(1976) finds that the studentized range test re-
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Previous research has
investigated the multi-
variate normality of
stock returns using
tests based on the mar-
ginal distribution of
returns. Due to the
contemporaneous cor-
relation across asset re-
turns, these tests are
difficult to interpret.
We develop a general
test procedure that
takes account of the
correlation across
assets and that focuses
on both the marginal
and joint distributions
of returns. We find
highly significant evi-
dence that stock re-
turns and market-
model residuals are
nonnormal. Moreover,
this nonnormality ap-
pears in both the mar-
ginal and joint distribu-
tions of asset returns.



296 Journal of Business

jects the normal distribution for monthly returns for 14 of the 30 Dow
Jones Industrials over the 1951-68 sample period. Since then, numer-
ous other test statistics have been reported, providing similar rejec-
tions. Note that, if a random variable is not univariate normally distrib-
uted, then it cannot have come from a multivariate normal distribution.
It would seem, therefore, that this test procedure and, perhaps even
more important, the corresponding evidence against multivariate nor-
mality is valid. Fama (1976) points out, however, that since returns
are contemporaneously correlated the statistics will not be indepen-
dent. The purpose of this article is to provide a procedure for calculat-
ing multivariate test statistics that takes account of this cross-sectional
dependence.

Specifically, we develop a procedure for testing whether a multivari-
ate time series of observations has a multivariate normal (MVN) distri-
bution. This procedure is based on Hansen’s generalized method of
moments (GMM) approach. Intuitively, the MVN distribution imposes
restrictions on the marginal and joint moments of the multivariate time
series in terms of a relatively small number of parameters: the means,
variances, and cross correlations. Overidentifying restrictions can be
formed to test whether these restrictions hold for a given sample of
observations. Interestingly enough, the cross-correlation parameters
that need to be estimated are precisely the ones that Fama (1976) was
worried about in reporting his results. Thus, the test statistics will be
intuitively appealing as they incorporate this cross correlation directly.

The article is organized as follows: Section II motivates the analysis
by studying the cross-dependence properties of individual statistics
of particular interest to financial economists, namely, skewness and
kurtosis. Section III develops a more general procedure for testing
whether a multivariate series is MVN distributed. Section IV applies
this procedure to test whether the residuals from market-model regres-
sions are multivariate normally distributed. Section V discusses some
extensions. Section VI concludes the article.

II. On Tests for Univariate Normality

It is well known that, if a vector of asset returns R, is MVN distributed,
then each asset return R;, is univariate normally distributed. Therefore,
although univariate normality does not imply multivariate normality,
rejection of univariate normality is sufficient to reject the MVN condi-
tion. The mass of evidence suggesting that some individual stock re-
turns do not come from univariate normal distributions would then
seem to indicate stock returns are in fact not distributed as multivariate
normals. With respect to tests for multivariate normality, however,
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drawing inferences from univariate statistics can be misleading. The
reason is that, given the correlation across assets, the univariate statis-
tics will in general be correlated. This correlation suggests the need
for a joint test across the asset returns being analyzed.

Consider two particular tests of normality, namely, the skewness
and kurtosis measures:

and

T
1 .
‘Z:Z R; — “‘i)4
VTK,=VT{—= -~ 35 N(0,24),

T
(5> ® -
t=1

where R, = return on asset i and {i; = 1/TZ]_| R,.

These statistical measures have been especially appealing to finan-
cial economists because they focus on properties of the distribution
that are of low enough order to have an identifiable effect on asset
returns and derivative securities. For example, Kraus and Litzen-
berger (1976) and Breeden (1986) investigate theoretical asset pricing
models that employ third and fourth moments directly. Similarly, the
mixture of distributions model (see, among others, Clark 1973; and
Tauchen and Pitts 1983) implies excess kurtosis and skewness relative
to the normal distribution. Finally, these measures have clear interpre-
tations in terms of deviations from normality. That is, potential depar-
tures from the univariate normal null will point toward alternative dis-
tributions that do satisfy the skewness and kurtotic shapes, as was the
case with Clark’s (1973) mixture of distributions model and Fama’s
(1965) initial empirical investigation of stock prices.

In terms of empirical work, existing stylized facts from the literature
are that continuously compounded returns are negatively skewed and
leptokurtic. With respect to monthly returns, however, this evidence
is considered especially weak; see, for example, Blume (1968), Officer
(1971), Fama (1976), and, more recently, Affleck-Graves and McDon-
ald (1989), among others. For example, in Fama’s (1976) investigation,
less than half of the Dow Jones firms have studentized ranges ex-
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ceeding the 10% significance level. For motivational purposes, table 1
provides individual skewness and kurtosis tests for monthly returns of
each Dow Jones 30 firm over the exact same sample period as Fama
(1976).! Only 12 firms have statistically significant excess kurtosis at
the 10% level, confirming conclusions reached in Fama (1976).2 The
skewness coefficients provide somewhat stronger evidence against
normality. Over half of the firms display significant skewness coeffi-
cients.

Consider for the moment the appearance of excess kurtosis in some
of the individual stock returns. There appear to be two possible expla-
nations for this kurtosis. First, stock returns are actually drawn from
some alternative distribution to the multivariate normal (perhaps a
multivariate Student ¢ or multivariate mixture of normals, both of
which produce ‘‘excess’’ kurtosis). A second, more subtle, explana-
tion is that the kurtosis patterns in stock returns may be spurious. The
argument goes something like this: suppose stock returns are in fact
MVN distributed. If we were to estimate the kurtosis of each stock
return, then (by chance) we would expect some to exhibit excess kur-
tosis. If asset returns were cross-sectionally uncorrelated, then any
excess kurtosis could be interpreted in terms of univariate statistics
with mild adjustments. However, if asset returns are highly correlated
(as they seem to be), then conditional on an asset exhibiting kurtosis
we would expect, even under the null hypothesis of multivariate nor-
mality, other assets to also exhibit some degree of kurtosis. Thus,
cross-sectional correlation across assets can lead to cross-sectional
patterns of kurtosis in small samples. In interpreting the actual kurtosis
results, therefore, the econometrician faces an identification problem:
is the fact that kurtosis shows up in some assets due to spurious kurto-
sis coupled with the correlation pattern across asset returns or is it
due to true kurtosis and the absence of normality in the returns’ distri-
butions?

However, if only a few stock returns exhibit kurtosis (as in table 1),
it might suggest the MVN assumption is a good working approximation
for stock returns. This type of reasoning can be misleading. Given the
correlation across asset returns, it may be that estimates of excess
kurtosis in only a few stocks provide substantial evidence against mul-

1. See the Appendix for a list of the Dow Jones 30 firms during the 1951-68 sample
period.

2. Table 1 provides p-values (based on the asymptotic distribution) and Monte Carlo
p-values. Monte Carlo p-values are based on a simulation where test statistics are calcu-
lated using 210 observations from a multivariate normal distribution with variance-
covariance matrix equal to the empirical variance-covariance matrix of the 30 Dow Jones
companies for the period January 1951 to June 1968. The Monte Carlo distribution is
based on 5,000 repetitions. Tables 2—4 provide Monte Carlo p-values using the same
simulation method.
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TABLE 1 Skewness and Kurtosis Statistics

Monte Monte
Company Skewness p-Value Carlo p Kurtosis p-Value Carlo p

ALD .6745 .0001 .0000 2.2702 .0000 .0000
AA .0255 .8818 .8820 .3964 2478 .2104
AMB .1994 .2381 2334 —-.0352 9170 9180
T .6541 .0001 .0002 3.0597 .0000 .0000
A .1640 3318 3272 —.2006 .5530 .5400
BS .5334 .0016 .0024 .5323 1154 .0882
CHV .1644 .3308 .3256 —.1161 7313 7362
C .2630 1197 1134 .3091 .3606 3254
DD .3895 .0212 .0236 .5576 .0991 .0766
EK .2939 .0820 .0854 7411 .0284 .0254
ESM .3258 .0539 .0548 4252 .2085 1736
XON .5021 .0030 .0042 2525 4552 4314
GE .3083 .0682 .0684 .5619 .0965 .0738
GF 4571 .0069 .0074 1.6833 .0000 .0000
GM .6733 .0001 .0000 1.2822 .0002 .0026
GT 3216 .0571 .0588 .3488 .3022 .2636
N .0755 .6553 .6584 .4883 .1486 1136
1P .2495 .1399 1352 .2330 .4906 .4696
M .5320 .0016 .0024 .8008 .0179 .0184
NAV .2441 .1486 .1464 .0479 .8874 .8878
Ol 1181 4849 4848 —.0145 9659 .9680
PA .2846 .0922 .0914 .2011 .5520 .5380
PG .0881 .6022 .6048 .3250 3364 .2986
S —.1269 .4529 .4526 1.1189 .0009 .0058
TX —.0108 9491 .9476 —.44438 .1883 .1508
X .6324 .0002 .0002 2.3180 .0000 .0000
UK .2476 .1429 1374 —.4170 2173 .1846
UTX .3674 .0297 .0308 .8382 .0132 .0156
WX 2219 1892 1872 —.2845 .4000 .3700
z .8385 .0000 .0000 2.5626 .0000 .0000
x% 99.5404 .0000 .0000 286.7852 .0000 .0000

Note.—This table tests for normality of the Dow Jones 30 companies for the period January
1951-June 1968. Column 1 contains the ticker symbol of the corporation. Column 2 contains the
skewness statistic, defined as the third central moment divided by 6. Columns 3 and 4 contain this
statistics table p-value and empirical p-value. Column 5 contains the kurtosis statistic, defined as the
fourth central moment divided by * minus 3. Columns 6 and 7 contain the table and Monte Carlo
p-value of this statistic. The last row of this table contains the multivariate x? test for normality
across all companies. Monte Carlo p-values are based on a simulation where test statistics are
calculated using 210 observations from a multivariate normal distribution with variance-covariance
matrix equal to the empirical variance-covariance matrix of the 30 Dow Jones companies for the
period January 1951-June 1968. Five thousand repetitions of the simulation are made.

tivariate normality. This is because the cross correlation across asset
returns provides information about the accuracy and precision of each
kurtosis estimate in the joint system.

It is possible to take into account the dependence between the uni-
variate statistics when testing for normality. For example, consider the
skewness and kurtosis measures for two assets i and j. Using results in
Hansen (1982) and the procedure developed in the next section, the
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following joint asymptotic distributions for the skewness and kurtosis
measures can be derived:

S, 0 6 6p; O 0

S| as 0 6p; 6 0 0
VT || =N L 1

K, oo o 24 24p}

K, o/ lo o0 24pt 24

where p; = the correlation between assets i and j.

Consider the sample correlation estimates between monthly asset
returns of the Dow Jones 30 firms over the period 1951-68. These
correlations vary from .0811 to .8425. Consider the two stocks with
the highest correlation, namely, Bethlehem Steel (BS) and United
States Steel (X). Using the joint asymptotic distribution of K; and K,
the correlation between the Bethlehem Steel’s kurtosis measure and
United States Steel’s kurtosis is over 50%. Under the null hypothesis,
this imposes sharp restrictions on the kurtosis patterns of these two
stock returns. In general, conditional on one asset exhibiting ‘‘appar-
ent kurtosis,’” under the null hypothesis that returns are normally dis-
tributed we would expect other correlated assets to exhibit similar
kurtosis—in particular, the more closely correlated assets should have
the most similar kurtosis. Thus, even though the magnitudes of kurto-
sis for each asset are important determinants of the distribution, an
equally important factor is the pattern in kurtosis measures across
assets.

One way to test for normally distributed returns in this environment
is to form a joint test across asset returns. For example, let K be the
N-vector of kurtosis measures for N assets, let V(K) be the variance-
covariance matrix of these kurtosis measures given above, and let A
be an M X N matrix of constants. Then

T(AK)'[AV(K)A']" (AK) =~ X} (1)

One popular example of test restrictions for a joint test that K; = 0
for all i is the Wald statistic. Specifically, let A = I, the N X N identity
matrix. Then the test statistic in (1) reduces to

W=TK'[VK)] 'K = X2 )

Over the sample period 1951-68, the Wald test statistic in equation
(2) is calculated for skewness and kurtosis restrictions across the 30
Dow Jones firms. These test results are provided in table 1. While the
individual kurtosis tests imply normality may be a good approximation,
the joint tests reject the multivariate normality of stock returns below
the .0001 level of significance. The joint tests of skewness across stock
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returns also strongly reject multivariate normality. In general, the joint
tests suggest much less evidence of normally distributed monthly stock
returns than do individual tests.

Note that the above statistics focus on the marginal distributions of
individual asset returns. By correctly taking into account the correla-
tion between these univariate statistics, rejection of marginal normality
is sufficient to reject the MVN restriction. It should be pointed out,
however, that for other applications detection of nonnormality through
marginal normality tests may be difficult. Tests that exploit the multi-
variate structure should, however, be more sensitive to departures
from the null. It is possible to incorporate this multivariate structure
of asset returns directly by estimating implied cross moments of asset
return distributions. The next section praposes a general procedure for
testing whether a multivariate series conforms to an MVN distribution.

III. Multivariate Test: Theory

There are a number of existing procedures for testing whether multi-
variate series are MVN. For example, in relation to results in this
article, Mardia (1970) proposes multivariate measures of skewness and
kurtosis, which are special cases of MVN moment restrictions and,
therefore, of the GMM procedure outlined below. Cox and Small
(1978) test for whether two series (x;,, x;,) are bivariate normal. They
propose a Wald-type test on the ¢-statistics from regressions of x; on
x;, and x}, (and vice versa). This procedure is similar in spirit to testing
conditional moment restrictions, which also falls into the GMM meth-
odology. In addition, multivariate generalizations of the popular Sha-
piro-Wilks and Kolmogorov-Smirnov tests have also been developed.
All of these MVN test methodologies, however, have not yet been
adopted toward applications in finance.® (See Mardia [1980] for an
excellent survey of the literature on these and other tests for multivari-
ate normality.)

This section develops an alternative procedure for testing whether
a multivariate time series of observations has an MVN distribution.
Let{R}"_, ={R,,, - . ., Ry,}!-, be an N-vector time series of observa-
tions from an independently and identically distributed (i.i.d.) multi-
variate distribution F.* If the multivariate series R, conforms to F, then
its moments (as long as they exist) should also conform to F’s:

E[h(R,,0)] = 0, 3

3. An exception is Zhou (1991), who uses the multivariate skewness and kurtosis tests
in order to examine multivariate normality of market-model regression residuals for
industry portfolios.

4. The i.i.d. assumption can be weakened to simply stationarity and ergodicity. Since
most previous test procedures for normality require the i.i.d. assumption, the weaker
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where 0 equals an M-vector of parameters governing F and A() is an
R-vector of functional forms.

In large samples, under the null hypothesis that R, LF , the sample
moments of (3) will converge in mean square to zero:

T
1 T
g1(0) = TZ] h(R,,0) = 0.

The idea behind the GMM procedure is to find the values of the un-
known parameters 6 that set the sample vector g, (0) equal to zero.
This will not be possible if the system is overidentified, that is, if
M < R. We can, however, set M X R linear combinations (denote A)
of the R-vector g(0) to zero:

Ag7(6) = 0. “

Hansen (1982) shows that the optimal choice of A in terms of minimiz-
ing the variance-covariance matrix of the parameter estimates 6 from
(4)is A = D{S;"', where D, = E[0h(R,, 06)/00] and S, = E[h(R,,
0)h(R,, 6)']. Of special interest to this article, Hansen also provides
the following statistical results:

VT — 6) = N0, [D}S5' D171,

and

Tr="Te(0) S5 120 = X3y

In practice, D, and S, are usually unknown; however, all that the the-
ory requires are consistent estimators of D, and S, for the asymptotic
normality and asymptotic x? distribution results to hold. For example,
one possible estimator for the asymptotic variance ([DyS; !'Dy]7}) is
((DyS7'D;17"), where D; and S, denote the sample moment esti-
mates.

Although the analysis in this article focuses on the MVN distribu-
tion, the procedure is applicable to any multivariate distribution as long
as its moments (in fact, two times the highest-order moment looked at)
exist and are finite.

assumptions are an attractive feature of the GMM test. The importance of relaxing the
i.i.d. assumption can be seen in recent empirical work which suggests stock returns may
be serially correlated (see, e.g., Lo and MacKinlay 1988) and heteroscedastic (see
Schwert 1989). This is of particular importance given that normality can be maintained
in the presence of serially correlated data. To coincide with the previous literature,
however, we maintain the i.i.d. assumption throughout most of the article and relax it
in Sec. VA.
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A. Multivariate Normal Distribution

The MVN distribution expresses its moments in terms of relatively
only a few parameters: the means, variances, and correlations between
Ry, . .., Ry, Therefore, many overidentifying (i.e., testable) restric-
tions can be placed on the data.

Without loss of generality, consider just two series, R, and R,
which are bivariate normal. Under this assumption, the moment gener-
ating function is given by

22 22
M(ti, tj) — et,«pi+rjpj+l/2(t,o,-+2p,«jtlij¢7,aj+tjcrj).

We can obtain all the moments, E[R R{] for all integers p and g = 0,
by differentiating M(¢;, ¢;) p times with respect to ¢; and g times with
respect to ; and then setting ¢, and ¢; equal to zero. Using this tech-
nique, it is possible to form more individual and joint moments than
the five parameters (w;, w;, o7, p;, o7) needed for estimation. There-
fore, using the procedure above, we can test whether (R;, R;) are
bivariate normal.

For example, consider the following sample moment conditions re-
lating to the first four moments and corresponding cross moments of
R, and R, (note that sample moment conditions can be expressed for
any higher-order moment—we focus on the third and fourth moments
to coincide with the previous discussion on skewness and kurtosis):

R, —
Rjt L
R; — P«i)z -

:
(Rjt - P~j)2 - jz
(R, — P«i)(Rj, - }Lj) — 0,0;p;
Ry — |~’“i)3
(Rjt - ij)3
Ry — m)* (R, — )
Ry — m)R; — 1y)?
(R — p)* = 30}
(R, — P~j)4 - 30}‘
Ri; = )Ry, — wy)* = olaf(l + 2p))
(R; — p‘i)3(Rjr - }Lj) - 30?0‘ij
Ry — H'i)(Rj; - IJ"j)3 - 30’i0}pij

Nl
7~

g1(0) = » 5)

h.
Il
—

where 6 = (p;, B, o7, Pij» (’JZ)'
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With these restrictions alone, the econometrician has 14 moment
conditions and only five parameters for estimation, leaving him with
nine overidentifying restrictions to test. In addition, as assets are
added, the number of testable restrictions increases by the rate N(N
— 1)/2, where N is the number of assets. Using the GMM estimation
procedure in equation (4), it is then straightforward to test these re-
strictions.

B. Optimal GMM Estimators: Theory

For simplicity, consider the moment restrictions in equation (5) of
Section IIIA. Under the null hypothesis that stock returns are MVN
distributed, the derivative matrix and variance-covariance matrix D,
and S, can be calculated analytically. In fact, they will have represen-
tations in terms of only the mean, variance, and correlation parameters
0. Using Hansen’s results, it is possible to calculate the optimal GMM
weights in equation (4), the 5 X 14 matrix A* = DSy !.

The optimal weights given by A* take on an especially interesting
form. Specifically, consider partitioning the general A matrix into two
matrices, one 5 X 5 and the other 5 X 9. In the optimal GMM case,
it is possible to show that the 5 x 5 matrix is the identity matrix while
the 5 X 9 matrix is a matrix of zeros—all the weight in estimation is
placed on the first five moments. Using this result, it is possible to
derive the optimal GMM estimators:

T
b = %;Rin

T
A 1 N
61 =70 Ry = i),
t=1

T

.1
pv - 7; Rjt’

1 T
0 = 7.0 Ram i)

and

1 T

72 Ry = BIR; = i)
o =1
Py = :

g; 0'1

The intuition for this choice of weights (and hence the estimators)
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is straightforward. Note that the GMM procedure chooses the weights
that minimize the variance-covariance matrix for a given set of moment
conditions. It is well known that maximum likelihood estimation
(MLE) asymptotically achieves the Cramer-Rao lower bound. For the
case of multivariate normality, the MLE estimates are simply the sam-
ple mean, variances, and correlations of the asset returns. These sam-
ple moments are completely described by the first five moments in
equation (5). In fact, as long as the first five moments are included in
estimation, the GMM procedure will always pick them out, irrespec-
tive of any other moment restrictions like those given in equation (5).

The econometrician can then substitute consistent estimates of 6
(e.g., the sample estimates) into these expressions for §, to get the
required consistent estimate, § 0(é).5 The J T(é) statistic then weights
the nonzero moments in equation (5) (i.e., the higher-order moments)
by this estimate of the variance-covariance matrix of the moment con-
ditions, S,(6).

C. Cross-Moments Example: Results

To coincide with the analysis in Section II, we can identify the system
of equations in (5) by adding skewness, kurtosis, and cross-moment
parameters. Specifically, these identified restrictions in (5) imply the
following cross-skewness and cross-kurtosis measures between assets
iandj:

iz (Rit - lli)z(Rjt - llj)

1 T 1 T 1/2°
[;Z(R,- ][iZ(R,,—u, ]

t=1

and

T
1 . .
70 Ry = 1)PR; — i)’
K. = =1 - (1 + 2py),

T T
[21"2 R — }1[)2] [%Z (Rjz - llj)z]

t=1

5. While estimating S, this way will have no effect on the asymptotic distribution
under the null, it will have different consequences for the small sample null distribution
of the statistics as well as for the power of the statistics under alternative multivariate
distributions. Section VC discusses this point in more detail.
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where
T

> Ry — BIR; — )

A t=1

P =T"7 12 T
[Z Ry — lli)z] [Z (Rj, - pv')z]
=1 =1

Using the result that the asymptotic variance of the parameter estima-
tors is [D§Sq ' Dy]7 !, the asymptotic distribution of the N-vector S(i)
= (S ..., 8y and K@) = (K, . . ., K;)) can be derived. The
typical elements of the variance-covariance matrix of the vector S(i)
are

1/2°

VT (S'J) TN ((0) ( 4pj +2 2p%pn + 4pikpilpjk))
S 0 20501 + 4PuPuPjk 4pi + 2

The typical elements of the variance-covariance matrix of the vector
K(i) are

VT () 2 ()
( 4p§ + 16p} + 4 4p%pf + 16p,pupup; + 4p?lpfk)
4pkpd + 16p,papipy + 4piP% 4pi + 16p;; + 4 .

Note that the asymptotic covariance between S(i) and K(i) is zero.
That is,

cov(S;,K,) =0 Vi, jk,andl

i
Similar to the kurtosis measures given in Section II, these measures
will be highly correlated when the asset returns have high correlation.
Consider two cross-kurtosis statistics, K; and K. Suppose, for exam-
ple, p,, = .90 for all s, ¢. In this case, over 80% of the variation in K;;
can be explained by K,. This imposes strong restrictions on cross-
kurtosis measures in the data. We explore some of these restrictions
below.

Using the same data as Section II, we perform tests of multivariate
normality that exploit the multivariate structure of asset returns. To
coincide with the skewness and kurtosis measures estimated in Section
II, we look at corresponding cross moments of skewness and kurtosis
across the 30 Dow Jones firms. To keep down the number of restric-
tions, we choose one of the assets (e.g., Allied Corporation [ALD]) as
a benchmark. This leads to 29 joint testable restrictions. Table 2 re-
ports the individual measures S, ; and K, ; forj = 2, ..., 30 and the
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TABLE 2 Coskewness and Cokurtosis Statistics
Monte Monte

Company Skewness p-Value Carlo p Kurtosis p-Value Carlo p
AA .2004 .0921 .0902 —.0015 .9938 .9926
AMB .3977 .0002 .0006 9129 .0000 .0004
T .0786 .4875 .4896 —.0151 9336 9244
A .2059 0777 .0758 1728 .3645 3194
BS .2809 .0239 .0254 .5105 .0158 .0146
CHV —.1193 .2748 .2814 —.0454 .7896 7784
C 1229 .2582 .2648 .1831 2782 2334
DD .1681 .1958 .1988 —.2096 3549 .3092
EK —.1005 3797 .3798 .0341 .8531 .8458
ESM .1485 .1680 .1678 3134 .0591 .0448
XON —.0897 4151 4130 .0486 7778 .7658
GE —.1457 .2103 2132 —.2063 .2765 2324
GF —.0294 7937 7920 —.1295 .4682 4312
GM .2035 .0804 .0800 .4551 L0165 .0154
GT .0263 .8316 .8302 —.0597 7755 .7644
N —.1191 .2783 .2846 —.0376 .8270 8162
IP 1355 2736 .2802 .0984 .6389 6142
M 3716 .0022 .0028 .8085 .0001 .0018
NAV .1070 .3299 3334 —.1121 5143 .4816
(0) 1 .0641 .5659 .5676 —.0134 .9395 .9300
PA —.0354 7436 .7436 —.1007 .5476 .5210
PG .1464 .1679 .1676 .3100 .0556 .0410
S 2233 .0487 .0510 .4568 0117 .0128
TX —.0804 .4653 .4644 —.0786 .6490 .6246
X 2978 .0184 .0176 7969 .0002 .0028
UK 3158 .0137 .0140 2229 3144 .2698
UTX .0788 .4498 .4452 —.1381 3775 3328
wX .1667 .1674 .1674 .0101 9601 9522
VA .2095 .0500 .0516 4176 .0108 0124
X3 98.7291 .0000 .0000 99.4022 .0000 .0036

Note.—This table tests for normality of the Dow Jones 30 companies for the period January
1951-June 1968. ALD is used as the reference asset. Column 1 contains the ticker symbol of the
corporation. Column 2 contains the coskewness statistic. Columns 3 and 4 contain the table and
Monte Carlo p-value of this statistic. Column 5 contains the cokurtosis statistic. Columns 6 and 7
contain the table and Monte Carlo p-value of this statistic. The last row of this table contains the
multivariate x? test for normality across all companies. Monte Carlo p-values are based on a simula-
tion where test statistics are calculated using 210 observations from a multivariate normal distribution
with variance-covariance matrix equal to the empirical variance-covariance matrix of the 30 Dow
Jones companies for the period January 1951-June 1968. Five thousand repetitions of the simulation
are made.

corresponding Wald statistics for joint tests of the hypothesis that S ;
=0and XK,; =0,j =2,...,30.

As with the individual kurtosis measures, the univariate cross-
kurtosis measures provide weak evidence against normality, with nine
of the 29 firms (i.e., ignoring the benchmark) displaying excess cross
kurtosis at the 10% level. The cross-skewness measures provide simi-
lar results with only 10 of 29 firms displaying excess cross skewness
at the 10% level. Similar to the joint tests given in table 1, the joint tests
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across the cross-skewness and cross-kurtosis measures are significant
below the .0001 level. Evidently, there is substantial evidence against
multivariate normality at both the marginal and joint distributional
levels.

IV. Empirical Example: Are Market-Model Residuals Multivariate
Normal?

As Affleck-Graves and McDonald (1989) point out, the crucial assump-
tion underlying many tests of asset-pricing theories is multivariate nor-
mality of market-model residuals. While some authors have found this
assumption to be empirically unimportant (e.g., see MacKinlay 1985;
and Affleck-Graves and McDonald 1989), others have shown that vio-
lation of this assumption can lead to incorrect inference (e.g., see
MacKinlay and Richardson [1991] for a discussion of these different
conclusions). Given the importance of this assumption, there have
been surprisingly few empirical investigations of the distributional
properties of the residuals.

Exceptions are Affleck-Graves and McDonald (1989) and Zhou
(1991). Zhou (1991) uses multivariate skewness and kurtosis measures
to test whether market-model residuals for industry portfolios are mul-
tivariate normal. He finds strong evidence against this hypothesis. In
contrast, Affleck-Graves and McDonald (1989) look at the properties
of the marginal distribution of the time series of individual residuals.
For example, with respect to market-model residuals of size portfolios
over S-year monthly sample periods, they find that in the prewar period
about half of the residuals are significantly different from the normal
distribution at the 5% level. In the postwar period, only 15%-20% are
significant. These results are difficult to interpret, especially given the
well-documented high correlation across portfolios. Below, we incor-
porate the correlation across the portfolio returns in applying the tests
of Sections II and III to the question of whether the market-model
residuals are MVN distributed.

Consider the disturbance term from the market-model equation for
excess returns on the 10 size decile portfolios (denote R,,):

€, =R,—o;,—B;R,,, i=1,...,10,
where
Ele;] = 0,
Ele,R,,] = 0,
and

R,,, = the excess market return.



Multivariate Normality 309

The econometrician’s goal is to test whether thee,, i = 1,..., 10,
are MVN distributed. These €;’s, however, are unobservable. Never-
theless, it is possible to test the multivariate normal hypothesis by
testing whether the residuals from the market-model regression of R,
on the R,’s conform to an MVN distribution.® Using the GMM test
procedure in Section III, this test is correctly specified and is equiva-
lent asymptotically to testing the disturbance terms directly. More-
over, under the null hypothesis that the disturbance terms are MVN
and under some weak additional assumptions, it is possible to show
that the distributional results given in Sections II and III are exactly
the same for the residuals (where €, is substituted for R;,).” Estimation
of a; and B;, therefore, poses no real efficiency problem asymptotically
in the GMM framework.

With respect to the multivariate normality of the market model resid-
uals on the 10 size portfolios, we calculate the skewness, kurtosis, and
cross-moments test statistics of Sections II and III. These tests are
performed over 5-year monthly periods from 1926 to 1990 and over the
overall period. For each measure, we report the number of individual
rejections and the Wald test statistic with corresponding p-value.
These results are provided in table 3 (i.e., Sec. II tests) and in table 4
(i.e., Sec. III tests).

6. Specifically, the market model residuals equal

¢,=R,—&;—-BR,, i=1,...,10; t=1,...,T,
where
&; = Eu - éiﬁmn
T — —
D R = R)Rp = Ry)
A =1
Bi= T s
D Ry = Ryp)?
t=1
—_ 1 T
R = TZRH’
t=1
and

T
= 1
Rmt - T; Rmt'

7. The condition sufficient for asymptotic equivalence is E[R,€}e4] = 0 for all i and
J, and for any r and q dictated via the particular moment conditions being estimated.
For example, in the example using kurtosis in Sec. IIA, we must assume that E[R,,€}]
= 0 for all i. A sufficient condition for this being true is that the disturbance terms are
independent of the market return, a common assumption in the literature. Of interest to
our earlier analysis, this condition is true if the asset returns and the market return are
multivariate normal.
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The multivariate tests provide very similar results. Nine of the 13
subperiods show a strong rejection of multivariate normality for all
four tests. In the prewar period (1926-40), all of the three subperiods
reject multivariate normality. In the postwar period (1946-90), multi-
variate normality is rejected for five of the nine subperiods.

The results highlight some of the pitfalls of reliance on univariate
statistics when these statistics are highly related. For example, for the
1926-30 subperiod only two of the 10 skewness measures, three of the
10 kurtosis measures, three of the nine cross-skewness measures, and
three of the nine cross-kurtosis measures reject normality. All four
of the multivariate tests provide strong evidence against normality.
Similarly, for the 1981-85 subperiod only one of the nine cross-kurtosis
measures indicates rejection of normality, yet the multivariate test
indicates a strong rejection of multivariate normality. In contrast, for
the 1946-50 subperiod eight of the nine cross-skewness tests reject
normality, yet the multivariate tests do not reject normality.

V. Extensions

A. Relaxation of i.i.d. Assumption

The multivariate test procedure in Section III assumed that {R,}_, are
drawn from an i.i.d. multivariate distribution. In terms of the distribu-
tional results, however, the test procedure requires only that the R, be
stationary and ergodic and that the moment restrictions have a finite
variance-covariance matrix. When the i.i.d. assumption is relaxed, for
the analysis to make sense, the form of serial dependence (e.g., serial
correlation, conditional heteroscedasticity, etc.) must be internally
consistent with the multivariate normal null hypothesis. For example,
suppose stock returns are serially correlated following some autore-
gressive integrated moving average (ARIMA) model. Then if the inno-
vations across returns each period are i.i.d. multivariate normal, the
returns will also be multivariate normally distributed. The test statis-
tics, however, will be misspecified because the estimator for S, will
no longer be consistent. The econometrician is then confronted with
several issues. First, under the more general framework, is the meth-
odology described in Section III still valid? Second, if the methodology
is valid, is it necessary that we know what precise process the R,
follow? Finally, how should the tests be performed?

Without loss of generality, suppose that R;, follows an autoregressive
(AR) process of order 1. Further, assume that the econometrician is
interested in estimating and testing properties of the variance o%,
First, note that the best estimator (in terms of minimizing the asymp-
totic variance) for o}, is the ML estimator, (eME)2 = (cME)?/[1 —
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(yMLE)2], where o is the variance of the market-model innovation term
and v is the AR parameter. It is possible to show that this estimator is,
for all relevant asymptotic comparisons, equal to the sample variance,
6%, Thus, as in Section III, the optimal GMM estimators are still the
sample means, variances, and correlations. Intuitively, since one can-
not do better asymptotically than MLE, the GMM estimation will again
always pick these sample moments in estimation regardless of higher-
order moment restrictions or of any serial correlation in the returns.

However, even though the GMM estimates are the same under serial
dependence, this is not true of the estimators’ asymptotic variance-
covariance matrix. For example, in the AR(1) case, it is possible to
show that the variance of 6%, is [20%,(1 + v»)1/(1 — v?). Clearly, the
S, estimator for the i.i.d. case (i.e., 26%,) is then not consistent under
this more general AR formulation. Clearly, if the econometrician
knows the order of the AR process, then the estimation can be per-
formed directly. For example, in the AR(1) example, the asymptotic
variance of 6%, can be estimated consistently via [264,(1 + §9)]/(1 —
4?), where 4 is the first-order autocorrelation of R,.

Knowledge of the precise order of the process is usually not known
a priori. However, several procedures for estimating the variance-
covariance matrix in the presence of unknown serial dependence have
been developed. For example, Hansen (1982) shows how to adjust §,
to reflect general dependence:

I=+4o

So= > ER)AR,)1.

|=—

One such estimator for S is the sample moment estimate of S, trun-
cated at some ‘‘reasonable’’ value for | (see Hansen and Singleton
[1982] for a discussion). Unfortunately, this estimator is not assured of
being positive definite. Nevertheless, there are similar autocorrelation
consistent estimators that ensure positive definiteness (see, e.g.,
Newey and West 1987; and Andrews 1991).

In summary, the GMM procedure in the presence of serial depen-
dence involves three steps:

First, apply the GMM methodology to get the optimal estimates. In
the case of the MVN distribution, GMM produces the sample mo-
ments, fig, Gg, and p, for all i # j.

Second, estimate S, using an autocorrelation consistent estimator.
Denote this estimator S%.

Third, test the MVN distribution by calculating the statistic

Jr=Tg(0)' S g.(6),

and then evaluating J; at the appropriate level of significance.
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B. The Optimal Test

Small sample considerations aside, the GMM test procedure outlined
above generates an infinite number of test statistics, all with asymp-
totic x? distributions. In practice, this class of statistics is limited by
the number of assets and by a finite number of restrictions because we
have only a limited number of time-series observations at our disposal.
Nevertheless, the class of statistics is significantly larger than the
skewness/kurtosis statistics studied in Sections II and III. Given that
the econometrician has numerous moment conditions available to him
when testing the MVN distribution’s joint restrictions, a natural ques-
tion is, Which moment conditions should he choose in estimation?

Sometimes, of course, the choice of restrictions comes quite natu-
rally; for example, the econometrician may wish to focus on particular
moments such as skewness or kurtosis. As mentioned above, there
are a number of economic reasons why the finance literature has fo-
cused on these moments. Similarly, the theory may lead to particular
moment conditions; an illustration of this is the Kraus and Litzen-
berger (1976) three-moment capital asset pricing model (CAPM), in
which skewness plays a substantive role. These criteria, as with any
choice of test statistics, are somewhat subjective. In terms of a more
objective criterion, which moment restrictions should be chosen?

1. The approximate-slope procedure. Suppose we fix the number
of restrictions being tested at R — M = Q*. Irrespective of whether
the test statistic takes the form of equation (1) or the J;(6) statistic in
Section III, the asymptotic distribution of the statistic is xé*. From an
asymptotic point of view, there is no difference between choosing a
particular set of Q* overidentifying moment restrictions over an alter-
native set of Q* restrictions under the null hypothesis that asset returns
are MVN distributed.® There is a difference asymptotically, however,
between these statistics under specified alternative multivariate distri-
butions, that is, with respect to their relative asymptotic power. Using
Bahadur’s (1960) concept of approximate slope, Geweke (1981) devel-
ops a procedure for comparing the asymptotic power of test statistics
by comparing their approximate slopes.’

8. There may be a difference in small samples, however. To the extent that the goal
of asymptotic theory is to approximate the small sample distribution, one can argue we
should choose the moment restrictions which best fit the XZQ* distribution. Although there
is little theory suggesting which moments to choose on this basis, it is well known that
higher-order moments provide the poorest approximations in small samples. One would
suspect, therefore, that the best approximation occurs with lower-order moments and
cross moments. This issue deserves considerable more study but is beyond the scope
of this article. (See Serfling [1980] for a discussion of biases in sample moments and
Mardia [1980] for convergence properties of some moments in the case of normality.)

9. The approximate slope is a measure of the rate at which the null hypothesis be-
comes more incredible as the sample size increases. Specifically, for a given alternative
and fixed power, —2 In(a)/T converges almost surely to the approximate slope of the
test, where a is the marginal significance level of the test.
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Of special interest to this article, Geweke (1981) proves two impor-
tant results. First, if the test statistic has an asymptotic x? distribution,
then the approximate slope equals the probability limit (plim) of the
statistic deflated by sample size. Second, for a fixed number of restric-
tions Q*, the ratio of approximate slopes between two test statistics
will equal the inverse ratio of the minimum number of observations
needed to achieve a given power (i.e., as we let the size of the nonre-
jection region get arbitrarily large). For example, a statistic with one-
half the approximate slope of another statistic will need roughly twice
as many observations to reject the MVN distribution.

Therefore, under a given alternative multivariate distribution and
under a fixed number of restrictions Q*, one objective criterion for
choice of test restrictions is to pick the moment conditions that max-
imize the approximate slope of the test. This is an especially appealing
method because the result will often not depend on nuisance parame-
ters. That is, similar to the asymptotic null distribution being derived
for arbitrary n and o, the approximate-slope results will also be inde-
pendent of the values of p and o. This will not necessarily be true of
power calculations based on Monte Carlo simulations. The drawback
of the approximate-slope procedure relative to Monte Carlo simula-
tion, however, is that it is valid only asymptotically.

Nevertheless, to see this procedure in practice, consider the Ji(6)
statistic, where i represents just one set of particular moment restric-
tions. In terms of J '}(é), choose the restrictions i that maximize

plim[g5(8)' S}~ g7(6)]

under a given alternative. At first glance, this task may seem somewhat
daunting. But, in fact, these probability limits are fairly straightforward
to calculate. This is because plim[g(6)] and §, are simply moments
of the distribution, which (if they exist) can be calculated directly
under the alternative distribution. These calculations are made even
easier when we realize that under the MVN null hypothesis our esti-
mate of S, is a known function of only the means, variances, and
correlations between the assets. As long as we impose the null hypoth-
esis in estimation, all that we need to calculate, therefore, is plim
[gT(é)] under the alternative distribution.

2. Example. As an illustration of the approximate-slope procedure,
consider the ‘‘kurtosis-based’ statistics of Sections IIB and IIIA.
Since these statistics have asymptotic x? distributions, their approxi-
mate slopes under given alternatives can be compared directly. One
popular alternative distributional model to multivariate normality is
the multivariate Student ¢ (see Blattberg and Gonedes [1974] for an
example of empirical work and Ingersoll [1987] for some theoretical
justification of this distribution). Under the multivariate ¢ assumption,
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the plim of K; and K; are readily calculated (see Johnson and Kotz
[1970] and Zellner [1971] for distributional properties of the multivari-
ate 7).

For simplicity, consider testing just one restriction and choosing
between the kurtosis and cross-kurtosis tests, that is, K; = 0 versus
K; = 0. Using the asymptotic distributional results in Sections II and
III above, the approximate slopes of K; (denote c;) and K; (denote c)
are given by

3
;==
2v — 4)?

and

305 1
c=\1+-3 402 + 1 — 2’
Py T 4p; + -4

where v = degrees of freedom parameter for multivariate ¢. Note that
the approximate slopes depend only on the degrees of freedom parame-
ter v and (in the case of cross kurtosis) the true correlation between
asset returns. The approximate slope, and thus the asymptotic power,
of the tests decreases as v increases. This is expected as Student ¢
with high v is approximately normal. The ratio of the approximate
slopes, c;/c;, takes on an especially interesting form. It is independent
of v (and, therefore, holds for all multivariate ¢ alternatives) and de-
pends only on the true correlation between asset returns. In particular,
c;/c; ranges from 1 to 1.5 as a decreasing function of the correlation
between the assets, p;. As an illustration, suppose the correlation be-
tween the two asset returns is 80%. In this case, c; is 31.96% greater
than c¢;. Therefore, if we decide to use the cross-kurtosis test instead
of the more standard kurtosis measure, we will need almost one-third
more observations to achieve the same power in testing multivariate
normality against any multivariate Student ¢ alternative.

These results do not hold generally for the multiple-restriction case.
The ratio of the approximate slope of the Wald test for the kurtosis
measures over the approximate slope of the Wald test for the cross-
kurtosis measures can be either greater than or less than one. This
ratio depends on the correlation matrix across asset returns. As an
example, consider fixing the number of restrictions at nine (with size
decile 1 as the benchmark asset) and comparing the kurtosis Wald
statistic and cross-kurtosis Wald statistics of Sections II and IIIA,
respectively. In order to compare their approximate slopes, it is neces-
sary to specify the complete correlation matrix of the asset returns.
Suppose the true correlation structure is equal to the sample cross
correlations of the market-model residuals for the 1986—-90 subperiod.

The resulting ratio of approximate slopes, c;/c;, is 1.266. Evidently,
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in this particular case, the Wald statistic for the kurtosis measures
provides greater asymptotic power.

C. On Imposing the Null Distribution in Estimation

So far, we have imposed the null distribution when calculating the
asymptotic variance-covariance matrix of the estimators. In particular,
our method calculates the variance-covariance matrix analytically un-
der the null hypothesis that R, LF (R, 0). An estimate of S4(6) can
then be provided through S,(8), where 6 is a consistent estimate of 9
(e.g., one possible choice being the sample means, variance, and cross
correlations). An alternative estimation strategy involves not imposing
the null distribution and calculating the variance-covariance matrix
using sample estimates. Consider the estimator, S;(8), where 0 is a
consistent estimate of 6 and S is the sample estimate of the variance-
covariance matrix of the moment conditions. It is possible to show
that S,(8) is consistent and has asymptotically equivalent properties
to S,(6) under the null hypothesis.

What are possible reasons for choosing one estimator over another?
In terms of the size of the GMM test, the analytical estimator (S4(9))
requires estimation of only the first and second moments of the distri-
bution. This has two benefits in small samples. First, there are well-
known problems with estimating higher-order moments in small sam-
ples—biases and slow convergence are prevalent (see n. 8 above). In
contrast to S,(8), the sample estimator (S;(8)) requires estimating
twice the highest-order moment restriction. For example, a kurtosis-
based test requires estimation of the eighth moment in addition to
lower-order moments. This points to the second benefit of using $,(8)
over S;(0). The estimator S;(8) requires estimation of many more
moments. For example, with the moment conditions given in equation
%), 50(6) estimates five moments, while $;(9) needs to estimate [N(N
— 1)]I/2 = 91 moments. The sampling errors in small samples associ-
ated with repeated use of the data (in this case, multiple-moment esti-
mation) is therefore much worse for the estimator S ,(8).

In terms of the power of the test, there is no reason a priori to
choose one estimator over the other. Note that So(8)’s estimate is the
same irrespective of whether the data come from the null or alterna-
tive. In contrast, the estimator S;(8) picks up information contained
in the alternative distribution. Therefore, under some alternative distri-
bution, these different estimators will provide quite different weights
on the moment restrictions not set equal to zero. The ultimate choice
then depends on the class of alternatives the econometrician deems
reasonable.

One way to address this issue formally is via the approximate slope
procedure discussed in Section VB above. Fixing the alternative,
the approximate slope procedure can then be used to choose ex ante
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the appropriate estimate for S, in terms of power. In particular, un-
der the alternative distribution and a fixed number of restrictions,
plim[g;(8)' Sy 'g7(0)] can be compared to plim[gT((-))’SA 7 'gr(0)]. AIf,
for example, the ratio of approximate slopes plim[g(0)'S; ' g(6)]1/
plim[gT(é)’S T 1gT((A))] is two-to-one, then the sample estimation proce-
dure (using S;(8)) has less asymptotic power, requiring about twice as
many observations to be equivalent.

One final comment pertains to the estimation procedure in general.
Suppose we wish to construct confidence intervals around the statistics
that are valid under many distributional alternatives. As an example,
consider the following sample moments for univariate kurtosis restric-
tions for R; and R;:

R —
R — n,
0 <L i R — p«.-)z - cri ©
T T L Rj = wy)° = 0j ‘

(R, — ) —oiB + K})
R; — wn)* —o/G + K})

Construction of ‘‘distribution-free’’ confidence intervals around
K¥ and K * is straightforward. The steps can be described as follows.
First, the econometrician calculates both the sample derivative matrix,
D; = 1/T =L, 3h(R,, 6)/06, and the sample variance-covariance
matrix, S; = 1/T 2L, h(R,, 6)h(R,, 6)". Using these estimates, the
asymptotic variance of the estimators can be consistently estimated
by [D;S;'D;]"". The standard errors around K and K *, therefore,
do not depend explicitly on an imposed null distribution. Tests for an
MVN distribution (i.e., K} = K} = 0), tests for a Poisson distribution
(i.e., K} = 1/p; and K¥ = 1/p;), and so forth, can be readily per-
formed.

The obvious benefit behind this type of generalization is that the
estimators and corresponding confidence intervals are robust to many
distributions (i.e., to ones with well-defined moments). The drawback
is that the properties of these statistics in small samples may be suspect
for the reasons described above.!°

10. A similar kind of analysis can be performed for overidentifying restrictions, al-
though some null (no matter how weak) needs to be imposed via the moment restrictions.
For example, one might wish to test whether the data come from a class of multivariate
symmetric distributions in which skewness is zero. The procedure here is to first esti-
mate consistent estimates, 6, of the parameters using some weighting matrix (e.g., the
identity matrix I):

mein g1(0)'Ig ().
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VI. Conclusion

It is difficult to interpret individual test statistics for univariate normal-
ity in stock returns across assets. By explicitly taking into account the
contemporaneous correlation between asset returns, it is possible to
jointly test the hypothesis that stock returns are normally distributed.
These tests restrict themselves, however, to investigations of the mar-
ginal distributions of the assets—departures from multivariate normal-
ity may be more prevalent in the joint distribution of the assets. This
article proposes a class of tests that exploits information contained in
both the marginal and joint moments of asset returns. Of statistical
interest, this class of test statistics is easy to calculate with well-known
asymptotic distributions. As a technical by-product, we discuss a pro-
cedure for evaluating the most powerful statistic within this class.

In applying these tests to stock returns and market-model residuals,
we find highly significant evidence of nonnormality in both the mar-
ginal and joint distributions of these variables. At least empirically,
therefore, the multivariate normal assumption cannot be justified. With
respect to alternative multivariate distributions (e.g., such as the multi-
variate f), the techniques introduced here can be used to test the appro-
priateness of these alternative distributions. To this extent, this article
should have applications elsewhere in the literature.

Appendix

Dow Jones Firms (January 1951-June 1968)

Allied Corporation (ALD)
Alcoa (AA)
American Tobacco (AMB)
AT & T (T)
Anaconda Co. (A)
Bethlehem Steel Corporation (BS)
Standard Oil (Calif.) (CHV)
Chrysler Corp ©

Du Pont E. I. De Nemours & Company (DD)
Eastman Kodak Company (EK)

In the second step, the econometrician_calculates an optimal weighting matrix using
these consistent estimates, denoted S7(8). The final step then has the econometrician
calculate the optimal GMM estimates, 0, from

min 21(0)'S7(6)"' g7(6),

and the corresponding overidentifying restrictions test statistic using these optimal esti-
mates:

Tg1(6)'S1(8) ™' g1(6).
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Swift & Co. (ESM)
Standard Oil (N.J.) (XON)
General Electric Company (GE)
General Foods Corporation (GF)
General Motors Corporation (GM)
Goodyear Tire & Rubber Company (GT)
International Nickel M™N)
International Paper (IP)
Johns Manville Corporation M)
International Harvester (NAV)
Owens-Illinois, Inc. ((0)))
American Can (PA)
Procter & Gamble Company (PG)
Sears Roebuck & Company (S)
Texaco Inc. (TX)
United States Steel Corporation (X)
Union Carbide Corporation (UK)
United Aircraft (UTX)
Westinghouse Electric Corporation (WX)
F. W. Woolworth Company (V4]
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