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Path Dependent Options: “Buy at the Low,
Sell at the High”

M. BARRY GOLDMAN, HOWARD B. SOSIN and MARY ANN GATTO

L. Introduction

It 1s weLL KNOWN that the valuation of European puts and calls with fixed
exercise prices is solely dependent on the distribution of the terminal price of the
underlying stock. This paper examines the properties of European options with
exercise prices that are functions of the realized sample path of the stock. In
particular, the commonplace shareholder desire to “buy at the low” and sell at
the high” can be satisfied with a combination of a call on the stock with an
exercise price equal to mihec<r S(r) and a put with exercise price equal to
MAaXoe.<7 S(7) where S is the stock price and 7 is the term of the option.’

Strictly speaking, the creation of these new options in a frictionless context
would not expand the investor’s opportunity set. However, in a realistic market
setting such new options might very well acquire substantial popularity. The
appeal would be threefold: (1) the options would guarantee the investor’s fantasy
of buying at the low and selling at the high, (2) the options would, in some loose
intuitive sense, minimize regret, and (3) the options would allow investors with
special information on the range (but possibly without special information on the
terminal stock price) to directly take advantage of such information.

In this paper we analyze the hedging, pricing, and economic properties of these
options. Wherever possible we compare and contrast these options with their
traditional counterparts. In section two we establish that these options can be
hedged and that closed-form valuation equations exist. Particular emphasis here
centers on the hedgeability of these options when the stock is at an extremum
(ie., equal to its current maximum or minimum). In section three, by analysis
and simulation, we establish the properties of these options and contrast them
with those of their iraditional counterparts. In particular we examine: (1) the
functional dependence of these options with respect to two state variables—stock
price and time to expiration, and (2) the pricing of these options relative to the
stock and traditional options at the time of inception. Due to the ungainliness of
the general pricing relations developed in section two, we found it convenient
throughout section three to provide detailed analyses and explicit derivations of
the properties of these options for the particularly intuitive case where the
logarithm of the adjusted geometric mean return of the stock is zero. We then
illustrate by simulation that, qualitatively, the results of our specific example
carry over to the general case. We conclude in section four with a general
discussion of path-dependent options.

! Another example of a path-dependent option that has been examined in the pricing of an
American put. See Parkinson [7] for details.
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Throughout the paper we will adhere to the following notation

Timing conventions:

O: All options are assumed to be written at time zero,
T The expiration date of all options,
T The current date,
¢ T — =, the time to expiration.

Remaining notation:
S{7): Stock price at time 1, (occasionally abbreviated to S),
X: Exercise price,
r: Risk free rate of interest,
o’ Variance per unit tire of log of stock price return,’
C(S(r), X, ¢]: Value of an ordinary European call,
P[8{n), X, £]. Value of an ordinary European put,
M) MAaXscse, 9(8), (occasionally abbreviated to M),
Q(r): MiNocse. S(8), (occasionally abbreviated to @),

Cain[S(1), Q(7), £]: Value of a European option to buy the stock at its
realized minimum, when the current stock price is S(r),
the realized minimum to date is Q(r), and the time
remaining on the option is ¢,

Prax[S(1), M(1), t]: Value of a European option to sell the stock at its
realized maximum, when the current stock price is S(r},
the realized maximum to date is M(r), and the time
remaining on the option is ¢,

N{(.-}, N{.} Standard normal cumulative distribution and density
functions,
J [In{S/X) + (r + a*/2)¢)
1. a \/E ]
Y [In(S/X) + (r — 6*/2)¢]
2. a JE 3
E: Expectation operator,
dy: Limit of a Wiener process, and
a Drift term of the rate of the return on the stock.

II. Hedging and Valuation

In order to hedge a position, the writer of any option must find a way to invest
the proceeds from the sale of the option in an initial portfolio and to then alter
the composition of this portfolio as is required to guarantee that in all states of
nature (i.e., with probability one) the terminal value of the portfolio is adequate
to meet his terminal obligation. This portfolio strategy is termed a perfect hedge
and has the following properties: {1) the value of the terminal portfolio is exactly
equal to the terminal obligation, and (2) the hedging policy is self-financing-each
portfolio revision undertaken is exactly financed by the proceeds from the sale of
the previous pogition.

? By “return” we denote {8..../8); The proportional gain or loss, (5,.a — S:3/8,, we call “rate of
return”.
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Recent work by Black and Scholes [1] and Merton {6] has established that in
a perfect (ie., frictionless} market, when the natural logarithm of the underlying
stack price follows a Wiener process with drift (i.e., d5/8 = a-dt + a.dy) so that
d(ln 8) = (@ — ¢*/2) dt + a-dy, the payoff of a European put or call with a fixed
exercise price can be identically duplicated by a portfolio consisting of shares of
stock and units of riskless hond. Thus, this portfolio meets the criteria established
for a perfect hedge. Cox and Ross [3] have illustrated and Barrison and Kreps
(6] have proved that if a contingent claim can be perfectly hedge it can be priced
ag if it existed in a rigk-neutral world. This result implies that the instantaneous
rate of retuwrn {(a) of the underlying stock is of no consequence to the pricing of
the option and in fact it may be assumed equal to the riskless rate (r). The drift
of the logarithm of the stack price becomes effectively (» — a?/2) per unit time,
and after making this substitution, the option will be priced at its discounted
expected terminal value.

Tagether these authors have illustrated that in equilibrium, to prevent riskless
arbitrage, ordinary European puts and calls will have the following closed-form
valuation equations:

C[S, X, £] = S-N{d\} — e"X.N(ds} 1)
P(S, X, t]=CIS. X, t] - S+ X-e™" @)

In this section we illustrate that puts on the maximum (P,.,) and calls on the
minimum {Cun) can be perfectly hedged and that closed-form valuation equations
can be derived. The major insight in this section concerns the hedgeability
of these options when the stock is at an extremum (i.e., at its current maxi-
mum or minimum). We begin this section by deriving the hedging portfolio when
r = 02/2 (i.e., the logarithm of the underlying stock has zero effective drift). Here
a hedging partfolio for writers of these options may be deduced as is illustrated
in the following theorem.

THEOREM 1: When r = 02/2,

Pooi[S(1), M(7}, t] = P[S(7), M(r), t] + C[S(r), M(r}, ¢t] {3)
and
Cuin[ S(1), Q(7), t] = P[S(1), Q(7), {] + C[S(r}, Q(r), ¢]. (4)

Proof: Far the proof of this result we refer the reader to the derivation of the
general pricing relations as summarized in relations (10) and (11) (i.e., letting »
= ¢%/2 and using the definitions of puts and call affirms the equivalence of Py,
and Cpi, to straddles).

Note that at r = 0, S(0) = M(0) = @(0). Thus, the theorem implies that an
initial hedging portfolio for Py, (for Cuia) is an ordinary put plus an ordinary call
(i.e., a straddle) both with an exercise price equal to the initial stock price and
term to maturity equal to the term to maturity of Puu{Cmin). By examination,
theorem 1 also implies that as long as the stock never rises above (falls below) its
initial value, the composition of the hedging portfolio is unaitered. Clearly, if,
over the life of the option, the stock price never rises above (falls below) its initial
value, the initial straddle would exactly satisfy the writer's terminal obligation.

For Py, M(T) = S(0) (for Crin, @(T) = 5(0)), the call (put) in the straddle would
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be valueless but the put (cail) in the straddle would be just what was required to
meet the terminal obligation. When the stock price is equal to its old maximum
{minimum} (i.e., the stock is at an extremum) and then achieves a new maximum
{minimum), theorem 1 implies that the old portfolio—the straddle with exercise
price equal to the old maximum (minimum)—should be s0ld and a new porfolio
established—a straddle with exercise price equal to the new maximum (mini-
mum}. Theorem 2 establishes that this is a self-financing portfolio strategy.
THEOREM 2: If r = o and X = S then

P[§8 + ds, S,‘t] + O[S+ ds, 8, 1]
=P8 +ds, S+ds t]+ C(S+ds, §+ds, t] (5)

and hence this is a self-financing portfolio strategy.
Proof: Taking a Taylor Series Expansion of the LHS of relation (5) around X =
S (holding the stock price and the term to expiration constant) yields:

P[S+ds X, t]+ C[S+ds, X, t]
=P[S+ds, X +ds ]+ C[S+ ds, X + ds, t]

_(3PS+ds, X+ds,&] dC[S+ds, X +ds.t])
aX aX

+ olds)

where o(ds) = terms of higher order than ds. These may be ignored since the
derivations of P[:] and C[-] are bounded. Using the Black-Scholes formulae
(relations (1} and (2)) to evaluate the terms in (.} yields

—(—2e"N{ds} + ™) =0
since, N{dz} = % when r = ¢%/2 and 8 = X. QED.

Anather way to state the result of theorem 2 is that when r = ¢°/2 and

aPmax aCmi;\
S = M S = T = 0 =q0\.
(7) (r)(or S(r) = Q(7)) M ( 20 )
Thus, in contrast to ordinary puts (calls) where increases (decreases) in the
exercise price always increase the value of the optiaon, for these special options,
when the stock is at its current maximum (minimum) infinitesimal changes in
the maximum (minimum} are valueless.

Hedging: The General Case

Theorem 3 below illustrates that the results of theorem 2 concerning changes
in the value of Puay (0r Crin)caused by changes in the maximum (minimum) when
the stock price is equal to its current maximum {(minimum) hold in general.
However, before presenting the proof, we will first motivate the result. To this
end it is useful to present a simplifying concept.

The Joint Distribution of M(T) and S(T): A Red Herring

If these options are hedgeable, then after making the Cox-Ross transformation
(i.e., substituting the risk-free rate of interest for the logarithm of the stock’s
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expected return and assuming that these securities are priced in a risk neutral
world) we know that P, will be priced equal to the probability weighted,
conditional {over non-negative payouts) expected value of the realized maximum
over the life of the option minus the terminal stock price, discounted back to the
present; Cumin will be priced equal to the probability weighted, conditional expected
value of the terminal stack price minus the realized minimum, discounted back
to the present:

Pua[S(1), M(7), £] = e "E |masl M(T) — S(T)1Prob(M = S} (6)
Coin S(r), Q(1), t] = €™"E |l S(T) — Q(T}]Prob(Q@ < §) (N

where E is a conditional expectation operator.

A casual examination of (6) and (7) seems to indicate that knowledge of the
conditional joint distribution of the maximum (minimum) and the terminal value
of a Wiener process with drift (conditioned on the current price, the curent
maximum (minimum) to date and the length of time remaining to expiration) is
required. However, since these options are always exercised we know that Prob(M
= 8) = 1, and Prob(® = S} = 1, hence we can use the distributive property of
expectation. Since ¢ “E[S(T)] = S(r), relations (6) and (7) may be rewritten as

P [S(1), M(r), t] = e "E[M(T)] - S(7) (6")
Crin[S(1), Q(7), £] = S(7) — e "E[Q(T)]. (7%

Thus, knowledge of the joint distribution is unnecessary; all that is required is
knowledge of the conditional distribution of the maximum (minimum). The
importance of this observation is that in order to value P, it is sufficient to
value a security that pays off the realized maximum {call it V..« and to then
subtract the current stock price; to value Cun it is sufficient to subtract from the
current stack price the value of a security that pays off the realized minimum
(call it V). Hence

Pm“[S('r), M(TL t] = Vma:[s(7)| M(T); t] - S(T} (8}
Cain{S(1), (7}, £] = S(1} — Veuin[S(7), Q(7), £]. )

Further, in order to prove that Pq., and Cy, are hedgeable it suffices to prove
that Ve, and Vi, are hedgeable since we know that the S(T} can be hedged
with S(r).

It is intuitive that for Pua(Cmin} when S(1) < M(1)}, (8(1) > @{7)) instantaneous
changes in its value can only be effected by changes in the stock price and changes
in time. That is, the assumed Wiener process for the stock insures that over the
infinitesimal horizon the stock price will not rise above (fall below) its current
maximum {(minimum). Thus, when the stack price is not equal to its current
maximum (minimum) potential changes in the maximum (minimum) can be
ignored (i.e., dM = 0, or d@ = 0). However, when S{t) = M{7), (S(r) = @(1)) it
might appear that infinitesimal changes in the value of the maximum (minimum)
would cause changes in the value of Vi (Vimin). This result, if it were true, has
the disturbing implication that when the stock price is at an extremum there
would appear to be two hedging ratios: one if the stock price rises, and one if
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the stock price falls. Two hedging ratios at a point in time would imply that a
portfolio of stock and bonds would not span these aptions.

Theorem 3 establishes that when S(r) = M(r), the distribution of M(T), (ie.,
the distribution of the maximum for the entire interval) is unaffected by marginal
changes in the current maximum. Since Vs, is only dependent upon the distri-

avmnx
bution of M(T), this theorem establishes that M) = (. Although not

Mizi=Sir)

y AV
presented, it is also true that ——— = 0.

3Q(r)
Qiry=Str}
THEOREM 3: When S(7) = M(r}, holding S constant, all of the moments of M(T)
are unaffected by marginal changes in M(r). Thus when S(t) = Mir) the
distribution of M(T) and hence the value of Puax is unaffected by marginal
changes in the maximum.

Proof: See Appendix 2.

The intuition behind this result is that when S(7) < M(7) there is always a
positive probability that M{+} will be the final maximum (i.e., M(r} = M(T)) and
hence marginal increases in M({r} will have value. However, in the limit as S(r)
— M(7) if the stock follows a Wiener process then the probability that M(r) =
M(T) approaches zero. At M{(r) = S(7) infinitesimal increases in M(r} will be of
no value. Thus the value of marginal changes in M(7) may be thought of as being
proportional to the probability that M(r) will be the terminal maximum.

The General Pricing Relations

Equations {10} and (11) present the pricing relations for V., and Vo, obtained
by making the Cox-Ross transformation and then computing the discounted
expected value of the terminal maximum and minimum. (Remember Prax = Vinax
=8, Crin = 8 — Vin).

_ 2 _ _
Vaas S(r), Mi7), E] = M('r)e_"[N[a 'u't} _a eg,m/aﬂN{ a .I.tf}]

avt 2r avt
+ S(f}[l + 0—2][1 - N{———__“ — e “2”” (10)
2r oVt
; = =rf b + p“ _ 02 —2ubsa? -b+ )U.E
Vinia[S(7), Q). £} = Q(1)e {N{ =7 } 5 € N —
+S(f)[1+‘_’j}N{*b—(#+ozlt} (1)
2r P

where:
a= Iln[M(r)/S(r)] =0,

b=In[8(1)/Q(r)] =0, and
u=r—o%/2
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Casual observation reveals that these relations meet their respective terminal
conditions. That is,

Venax[ S(T}, M(T), 0] = M(T)
Ve[ 0, M{1), ] = M(1)e™"

and,

Vuin[S(T), Q(T), 0] = Q(T)

Vein[0, 0, ¢] = 0.

To establish that relations (10) and (11) are self-financing it is necessary to
examine the evolution of V., and Vi through time. By hypothesis (i.e., since

the logarithm of the underlying stock follows a Wiener process with drift) V =
Viuax[S(7), M(7), t] is a smooth function of S and ¢ Dependence on M(r) will be

max

suppressed since theorem 3 estahlished that = 0 and since dM is zero

M-8
otherwise®. Ito's Lemma implies that

dV = VidS + Vi dt + % Viu(dS)* (12)
where:
(dS)? = —8%a? dt,
dS=a-S-dt+a.S.dy, and
a = drift term.

The only stochastic term (dS) may be hedged out by combining V with a short
position in stock equal to V\S dollars (where V, = 3V/4S). The coefficient of dy
will be zero hence the portfolio is riskleas and must satisfy the following relation:

dV - VidS = (V- Vi8)r.dr. (13)

The LHS is the return on the option, short the stock. The term in parentheses on
the RHS is the value of the portfolio remaining after shorting the stock. Noting
that dr = —dt and substituting (12) into (13) yields

V3 dt — l/ﬁ V118202 dt = —(V— V],S)r-dt.
Rearranging and canceling defines a differential equation for the value of Vi,

(V- V8Sir+ V, -% V8% =0 (14)

It is important to note that not only is relation (14) the differential equation for
Vimax but in addition it is the basic differential equation for ail contingent claims
written on a stock whose rates of return follow a Wiener process. In particular it
is the differential equation for Vi, Pmax, Cmin and for ordinary puts and calls. Of
course each option will have its own boundary conditions.

?This fact guarantees the arbitrage. However, (12) is exact only when § % M and must be modified

at the boundary § = M since the second partials w.r.t. M da not disappear on the boundary. This is
a mathematical curiosity and does not affect the solution technique, See Appendix 1 for details.
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Careful differentiation of (10) and (11) reveals that they satisfy relation {14).
Thus, relations (10) and (11) meet the criteria for a perfect hedge and will be the
equilibrium valuation equations for V.. and Vi

II. Properties of Puer A0d Cuin

In this section we briefly explore some of the properties of these path-dependent
options. In the first two subsections we describe these options as a function of the
state variables S and ¢ and compare the prices of these options with the prices of
traditional options and the price of the underlying stock. As a benchmark,
whenever illuminating, we briefly review the behavior of traditional puts and calls
before proceeding to analyze the properties of Pma: and Cumin. In Table I, we
contrast the inception values of these options for three alternative relations
between r and T?, and four alternative terms.

Table 1

Option Prices at Inception
(S=M=0=X=100¢, r=0.06)

T = (.2 years,
rmdo? [ r=maif2 | r=2a4
Put 2.51¢ 5,56 8.09
Call 3.70 6.75 9.23
hx 572 12.31 18.02
C in 6.62 1231 16.82
T = 0.5 years
Put 348 8.20 12.12
Calt 6.43 11.15 15.08
P 8.62 19.35 28.38
Cuin | 10.84 19.35 25.92
T = 1.0 years
Put 4.19 10.64 16.01
Call 10.0t 16.46 21.84
P... | 1L51 27.10 41.33
Coin | 15.88 27.10 15.50
T = 5.0 years
Put 4.14 15.11 24.47
Call 30.08 41.03 50.39
| Pryax 19.79 56.14 91.27
Cin | 39.22 56.14 67.35
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Options as Functions of the State Variables S and t: Properties of Traditional
Puts and Calls

It is well known (see Merton [6]) that ordinary calls are convex-increasing
functions of the stock price and increasing functions of the time to expiration.
Calls have the following boundary conditions:

C[S, X, 0] = max[S — X, 0], C[S, X, »] =8, and CI0, X, £] =0.

Less often exhibited are the properties of ordinary European puts. Puts are
convex-decreasing functions of the stock price. All “in-the-money” puts (8 < X}
are first decreasing functions of the time to expiration (i.e., at ¢t = 0, aP/dt |s>x =
—rX). Puts sufficiently in-the-money are decreasing-convex functions of the time
to expiration. Puts only slightly in-the-money first decrease, then increase and
finally decrease as a function of the time of expiration. Qut-of-the-money puts,

aP
(S > X) first increase (although at ¢ = 0, — = () and then decrease as a

at
=X
function of ¢£. The boundary conditions for a put are:

P[S, X, 0] = max[0, X — §], P[0, X, £] = Xe ™™, and PI[S, X, =] = 0.

Graphs for ordinary puts and calls are presented in panel a of Figures 1-4. Since
the case where r = a?/2 plays an important role in the analysis, and since the
qualitative results are unaffected, we have chosen to plot ordinary puts and calls
assuming this risk specification.

Properties of Prax

Panels b-d of Figure 1 present pictures of Pm. as a function of S for three
alternative relations between the riskless rate of interest and the variance of the
stock. For the case where r = a?/2 (Panel b), theorem 1 has established that Pmax
is equivalent to a straddle with exercise price equal to the current maximum. The
composition of this straddle is an in-the-money put plus an out-of-the-money call
(i.e., the exercise price for both options is M and by construction M > §). The
following theorem proves that for 7 = 6%/2 and M normalized to unity, Py as a
function of S first behaves like an in-the-money put and then like an ordinary
call. That is, Pmey is convex in S-first decreasing and then increasing.

THEOREM 4: When r = 0%/2, Pua is convex in 8 for t < «. Py, as a function of
8 first decreases, reaches a unique minimum and then increases. Its unique
minimum occurs at —In(S/M) = a’t.

Proof: see Appendix 2.

The intuition behind the behavior of Pn.. is that for S(r) sufficiently below
M(r), not enough time (probabilistically) remains to establish a new maximum
and to then establish a larger M(T) — S(T). Thus increases in S(7) lead to a
smaller expected M(T) — S(T'). However, for S(7) sufficiently close to M(r)
enough time remains to establish a new maximum and to then establish a larger
expected M(T) — S(T'). In other words, at inception and at all other times when
M(r) = Sir) and throughout the life of the option whenever M(r} — S(r) is
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Figure 1. Price of options to sell as a function of stock price for alternative times to maturity

(#) assumingm =1

sufficiently small the purchaser of the option first hopes that the stock will go up
{as he would if he held a call} and establish a new high. He then hopes that the
stock will go down {as he would if he held a put). Analogously, when ¢ is
sufficiently small {(i.e., 2 new maximum is unlikely)} Pm.x behaves as an ordinary
put {i.e., a decreasing function of §) and when ¢ is sufficiently large (i.e., a new
mazximurm is likely) Pms. behaves as an ordinary call (i.e., an increasing function
of §).

Qualitatively, the convexity of Pma for the case of r # 0%/2 is exhibited in
panels ¢ and d of Figure 1. Analytical confirmation of convexity is straightforward.
Using the notation of Theorem 3:

3"Prax _ o[ SLOW] _3’S _ [ M1} ]|dH(Z) 0
as* as* | oS §n | dZ |, ‘

Z=M/5
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From before we know that as a function of ¢ the value of a call is maximized
with ¢ = @ and that a sufficiently in-the-money put is maximized with ¢ = 0. The
next theorem establishes the somewhat surprising result that for r = 0%/2 and M
= 1, as a function of ¢, for any 8, the value of Pu., is uniquely maximized with
either £ = 0 or ¢t = w excepti for 8§ = % where Prg(%, 0] = Prad %, <}

THEOREM 5: Let r = 6%/2, y = a’t and M = 1. If § < %, Prax [S, v] will be
maximized at y = 0. If 8 2 4, PnalS, v] will be maximized at y = =, {Note:
Prad4, 0] = Prad'%, ®] = ).

Proof: See Appendix 2.

Theorems 4 and 5 established that for r = 6°/2 and M normalized to unity,
P,y first acts like a put and then a call and that the critical value of S below
which zero time is preferred and above which infinite time is preferred occurs at
the intersection of Pmu(S, 0] = 1 — § with PS8, @] = S or at § = %. Panels ¢
and d illustrate that the qualitative properties of theorems 4 and 5 hold for
arbitrary relations between r and o”. The critical point determining whether zero
or infinite time is preferred will now occur at the intersection of PS8, 0] = 1
— S and PrufS, ®] = (a’/2r}.Sorat § = l:af:Qr]' Thus the riskier the stock
the earlier the critical value of S.

Panels b-d of Figure 2 graph Pp,, as a function of ¢ first for r = ¢2/2 and then
for r = 2¢” and r = ¢%/4. These figures reinforce the results of theorems 4 and 5

2
for it is clear that for § > l: i

2], Prax 1s maximized at ¢ = = for § <
r+a

2r + a*
¢t =0 and ¢t = x are identical.

2
[——i—m], Prax 15 maximized at £ = 0 and for § = [2r ?: a,:l the value of P, at

Properties of Cpin

When r = g%/2, Cui» has been characterized as a straddle with exercise price
equal to the current minimum. The straddle consists of an out-of-the-money put
plus an in-the-money call. By an argument similar to that used for Pmar, Cruin i8
a convex function of S. However, in contrast to Puayx, Cmw 15 a strictly increasing
function of § and hence acts only like a call. That is,

Conin _ N{ln(S/Q} + (r+ o ,2):}
as avt

2
N [N[ln(S/Q) +(r+a /2):} _ 1] 20 (16
oVt

] . aC ar ] ]
since § = @ by construction. Since S > 0 and $ < 0, relation (16) illustrates

that (regardless of the relation between r and ¢ changes in the value of an in-
the-money call (the first term on the RHS) dominates changes in the value of an
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Figure 2. Price of options lo sell as a function of time ta maturity for alternative stock prices
(5) assumingm =1

out-of-the-money put (the second term on the RHS) if both have the same
exercise price.
Like a call, €., is a strictly increasing function of time to expiration.

IV. General Discussion

Hitherto, we have focused our attention upon the mathematical aspects of some
. path dependent options, to wit, the existence of pricing formulae and the quali-
tative properties of such formulae. Let us now speak more loosely about the
possible application of this knowledge.

The financial community expends considerable resources in attempts to better
predict the path of stock prices. Yet a few capital market instruments are designed
to take direct advantage of such information. Obviously, path dependent options
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could be designed to exploit these real or perceived informational opportunities.
For example an analyst with “special” knowledge of a stock’s range oaver a
particular period of time could use Pmax and Crin to achieve a tidy profit [Range
forecasts are regularly published. The value of such forecasts could be empirically
investigated by using strategies of Py.. and Cmi, that are functions of the
discrepancy between published forecasts and naive forecasts). Other path de-
pendent options could be designed to profitably utilize special information about
other aspects of the price distribution. Thus technicians could use path dependent
options to automatically implement the classical technical strategies.

Recent work by Harrison and Kreps [5] is an attempt to specify the set of
options that can be arbitraged. A madificiation of V.. which can be arbitraged
and has certain advantages over V.. is forthwith described: A program that
obtains the V. payout holds the stock long until the high is attained and then
sells the stock holding onto the proceeds in the form of non-interest bearing cash.
However, a clever investor would prefer to switch from a stock position to a
riskless bond position (that does pay interest). Further, the time of the switch
would be a function of both the price path and the rate of interest. Thus, we
could define new options that pay (ex-post) the maximum payouts obtainable by
going long stock (bonds) and then at some intermediate time substituting a bond
(stock) position for the stock (bond) position. A further discussion of such path
dependent options may be found in Goldman-Sosin and Shepp [4].

Our casual empiricism makes compelling the demand for Pu., and Crin and
other path dependent options since they allow direct and effective speculation
based on standard forecasts of share price distributions. Of course the valuation
formulae of this paper are oniy guidelines to the true values of such options since
the assumptions of our model are but a rough description of reality. In fact, it is
these very market imperfections (the deviations from our model’s perfect market
context) that give meaning to the new assets. The information heterogeneity of
investors and the costliness of creating perfect hedges of the new assets make the
options particularly desirable.

If these options are desirable then why don't they already exist? We believe
that markets inherently take advantage of scale economies and attempt to
internalize various externalities. The creation of a market is frought with danger—
sufficient scale may not be immediately achieved, the benefits of creation may in
large part not be captureable by the creators, legal impediments may prove overly
burdensome to the creators etc. Accordingly, a desirable and viable security may
not currently exist in the market. The test of a security’s viability is not its
existence but rather its capacity to survive in a fully developed market. Notice
that the new flourishing CBOE bears little resemblance to the OTC options
market of the preceding era.

Appendix 1*
Technically, (12) should be:
dV =V, dS§ + Vi dt + Vo dM + % V,(dS)?

+ Via dS dM + % Voo(dM)? + o(dl)  (12))

* We thank Mr. William Boyce for his persistence in the clarification of this issue.
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When § < M, dM = 0 and all partial derivative terms taken with respect to M
disappear—hence, yielding (12). However, when M = S and dS >0, V; and Vi
do not disappear {V, = 0 by Theorem 3). Accordingly, when M = S (12°) becomes:

dV = Vi dS + Vadt + % Vi(dS) + oldt) (127}

To derive (12") from (12'), set V2 equal to zero (by Theorem 3). Theorem 3
implies that when 8 = M and dS > 0:

(a) 0=dVo=VndS+ VndM

(b) 0=dV, =V dS+ VedM

Putting (a) and (b} together, when & = M yields:

(¢} —-Va=V,=Vp

Notice that relation (¢), although obtained assuming dS >0, is in fact independent
of dS since the values of the second-order partial derivatives are independent of
ds.

For our dynarnical system, by the properties of stochastic differential equations,
when S=M:d8>0=>dM =dS,dS=0=>dM =0, and

(d) (dS)? = % (dM dS) = % (dM)?
(c) and (d) require that when S = M

Y Vi(dS)? + Via dS dM + ‘% VaaldM)? + o(dt) = % V,(dS)® + o(dt)
and hence {12").

The switch from {12') te (12”) is a mathematical curiosity which has no bearing
on our solution technique since in all contingencies we can short Vi shares of
stack to form the riskless hedge {note that V|, + Vo = V| iff § = M).

Appendix 2

Proof of theorem 3: We know that M(T) = max[M(r), M(r, T}] where M(r, T)
is the maximum realized over the interval from 1 to T. We want to examine the
moments of (M(T)| 7, S(r), M(7)) in the limit as S(1) — Mi{r). Let Z = M(r, T)/
S(r} and

£ = M(1)/S(7) for Mi(r, TY < M(T)
| Mir, TV/S(r)(=2)  otherwise.

Note that Z is like a return and since 8 follows a random walk, the distribution
of Z is independent of the level of S(r). Let Z have a distribution function H(Z).
Also note that M(T) = S(n)A.

The n™ raw moment of M(T') may be written as

o0

Lin) = [(M(T)]" dG[M(T)]

8ir)
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where G(-) is the CDF of M(T'). By substitution this becomes

L{n} =I [S(AT dF(A).

Using the definition of A this may be decomposed into

Mis)/Sir)

dH(Z)] + [[S(—r}]"f

Mir)/S(z)

L(n) = [[M('r]" J’ - dH(z‘)].

1
Differentiation of L(n) with respect to M(r) yields
aLl.(n)
aM(r)

) . al{n
Finally, imsea W((r;

there is no probability mass associated with the point M(7)/S(r).

Mir)/Sirl
= n[M(1}]""’ j dH(Z)
1
= () since the assumed Wiener process guarantees that

Q.E.D.

Proof of theorem 4: P, has been characterized as the sum of a put (which is

convex-decreasing in S) and a call {which is convex-increasing in S). The sum of

two convex functions is convex and hence P, is convex. The uniqueness of the
minimum is also a result of convexity.

To establish the minimum, let y = ¢’ and normalized M = 1 (remember by

aPmax
construction § = M = 1). Then, Pu,[S, v] = P[S, y] + C[S, y]l for § =< 1, 35
In(8) + ¥ AP rax . AP max
= - =—1h  ax (I max
2N { 7 } 1, S | ence Pr.. decreases initially 25
y=0 yman
= 1, hence Pu.x eventually increases. agg,“ =0iff N(-} =% or —In(S) = v.
Q.ED.

Proof of theorem 5:

From theorem 4, [—1 € aPn.,/4S < 1}. Further, 3Pr.:/8S |,—o = —1 and P[S, 0]
=1 -8, 3Pmax/88 |yma = 1 and P[8, ] = §. Thus, if Pmad%, y] < % ¥ y other than
vy = 0, ¥ = o the proof is established. To see this, consider Figure A which plots

FIGURE A

max

Prals o] —— Pmax[$,0]=1-5
[ Fmax ME1-

0

0 172 s |1
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Prax[ 8, 0] and Pre[ S, ). Given the bounds on 3Pma./a8, if P[4, y] < '4 ¥ y other
than vy = 0 and y = o, then it will be impossible for any Prm.x as a function of S to
“invade” the shaded region. Hence the value of either Pu.[S, 0] or Pru S, =]
will dominate.

- aPrmu -
We will now prove that first decreases and then increases as a

S=152

e
A ]

where § = In 2. Notice that at y =0, L = —1 and at y = oo, L. = 0. We now show
that v sufficiently large implies L > 0. Clearly L > 0 if [ ] in relation (15) is

function of y.

o | o=

L = aPna/dy

ba| —

4 ]
ositive. For the normal density, — N'(0} > N{—} N[ } Hence >0
p % { N7 7 (-]
2 —8| 28 8 2 1
if — N1 —1 =— N'{0) or whenever N'{0}/N"’ = < - =144 Thus
VAR v om{Z] ]

we know that L initially decreases with y and that for y sufficiently large L is an

increasing function of y.
2

Now consider y =

02
— - Aty =1—, 72 = QU221 118 <= = 144. Thus L >0 if y =

2 2
18 Consider 0 = y < 6—8'
&[] {_6} —3;2|: 8’ ] . : . -] . 6’

—= =N — —1 +— + # |, which implies, — > 0 if y < . Thus
&y & Y PR oy TS1 -4

aPmax - a . 2
can change signs only once during interval 0 =< y =< =4

5 /% will be maximized at the smallest y, or at y =

—

@

At y = 0, L < 0 and {-] < 0,

Thus L

8=1s2
2

starts out negative at y = @, and is positive at y = T
thereafter.

g and remains positive

QED.
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