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1. Introduction

Closed-form valuation equations exist for only a small subset of all possible
derivative securities. Most have to be priced by some numerical approximation
technique, such as Binomial and Trinomial lattice models. These models are
widely used because they are intuitive and very #exible. It can be proved that as
the lattice is made "ner, these methods converge to the theoretical option values
that would be produced by a continuous-time, continuous-state model, such as
Black}Scholes. Unfortunately, convergence is normally non-monotonic, and
some problems require very large numbers of calculations to achieve acceptable
accuracy. This typically occurs when the lattice is too coarse in some critical
region where the option value is highly nonlinear. Examples include around the
strike price at expiration or near the knock-out price for a barrier option.
Reducing the step size increases accuracy, but the computational e!ort required
increases very rapidly, with much of it wasted on unimportant regions.

In this paper, we present a new approach for constructing a lattice-based
valuation model that allows the user to vary the resolution in di!erent parts of
the tree. A relatively coarse grid that is fast to calculate is used for most of the
lattice, but a small section of "ne mesh is constructed where greater accuracy
really matters. This Adaptive Mesh Model (AMM) can improve e$ciency
signi"cantly for a relatively small increase in computational e!ort. For some
common problems, including calculation of delta, accuracy may be increased by
several orders of magnitude relative to commonly used methods, in the same
execution time.

The potential performance improvement is so large in some cases that entire
classes of problems that could not reasonably be addressed with the standard
technology will now become accessible. For example, computing an implied
volatility (IV) requires solving an option valuation model repeatedly with
di!erent trial values for the volatility input. If the valuation algorithm takes
5 min to price some exotic option and it must be priced ten times, on average, to
obtain an accurate IV, constructing an implied volatility data set of reasonable
size becomes extremely time-consuming.1 An AMM procedure that reduces
computation time for the option to 5 s (an improvement that is quite possible for
many problems) greatly extends the possibilities for research in this area.

In the next section, we discuss approximation error in lattice models and
describe how it can be thought of as arising from two di!erent sources. `Distri-
bution errora occurs because, throughout the tree, the model attempts to
approximate a continuous lognormal distribution with a discrete binomial or
trinomial distribution. `Nonlinearity errora arises because the option value is
nonlinear in the underlying asset price in a way that can not be captured

1This is especially true if numerical derivatives must be computed at each step in the optimization.
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accurately by the discrete lattice. For an ordinary call or put this occurs around
the strike price at expiration; other derivatives can undergo a discrete jump in
value at a given asset price or date. In the Binomial model, nonlinearity error
produces a peculiar even-odd convergence property, which causes the approxi-
mation error to alternate between two quite di!erent values as the number of
time steps in the tree goes from even to odd and back to even.

Section 3 illustrates the valuation of a put option with a simple Adaptive
Mesh Model. This demonstrates both how the AMM procedure is implemented
and how it can greatly reduce approximation error with very little increase in
computation. Section 4 examines the problem of pricing a barrier option, in this
case a down and out call. Here, signi"cant nonlinearity error occurs not just at
expiration but at every point in time when the asset price approaches the barrier.
Moreover, because the valuation lattice must allow at least one price step
between the initial asset price and the barrier, the number of nodes required for
a standard trinomial tree explodes when the asset price starts close to the
barrier. Section 5 discusses calculation of the `Greek lettera risk exposures in
trinomial lattices. We "rst show that there is a large di!erence in accuracy
among the standard approaches to computing delta and gamma, and then
present a third type of AMM that improves accuracy further by adding a section
of "ne mesh around the initial node of the tree. The "nal section concludes with
a brief discussion of further extensions to the AMM approach. In the Appendix,
we provide a formal proof of convergence for one of our models, the barrier
option AMM. This also serves as a model of how such proofs may be construc-
ted for other AMM structures.

2. Valuing options with lattice models

The Black}Scholes (1973) (BS) model was the "rst rigorously justi"able
closed-form equation for pricing European calls and puts based on observable
parameters. Equally importantly, the no-arbitrage principle used to obtain the
BS equation pointed the way toward theoretical valuation models for all types
of contingent claims. Unfortunately, American options and other contracts with
early exercise present a serious problem because, although the no-arbitrage
principle still holds, usable closed-form valuation equations seldom exist.

The Black}Scholes methodology begins with the assumption that the under-
lying asset (which we will often refer to as the `stocka) follows the logarithmic
di!usion,

dS/S"k dt#p dz, (1)

where dS denotes the change in the asset price S over the in"nitesimal time
interval dt, k and p are the instantaneous mean and volatility, and dz represents
standard Brownian motion.
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With continuous trading and no transactions costs, an investor can follow
a self-"nancing dynamic trading strategy to replicate a derivative security's
future payo! exactly. Thus, to avoid pro"table arbitrage the option value must
equal the cost of the replicating portfolio. This leads to the fundamental partial
di!erential equation (PDE) of contingent claims pricing. In certain cases, the
PDE can be solved to give a closed form valuation equation; otherwise an
approximate option value can be obtained using `"nite di!erencea numerical
solution techniques, as Brennan and Schwartz (1977) demonstrate in their
examination of American put pricing. The explicit "nite di!erence technique for
solving the PDE is equivalent to a trinomial tree procedure, though many users
"nd lattice methods more intuitive.2 Still, the identity between the two implies
that the AMM technique can also be used within a standard "nite di!erence
scheme.

The original Binomial model is based on the principle of option replication:
Within the binomial tree, an option's payo! can be reproduced by trading
a portfolio consisting of just the stock and the riskless asset. Other lattice
schemes, including the Trinomial, do not admit option replication. However,
under the standard assumptions of option pricing, it can be shown that the
option's fair value is the same as it would be in a risk neutral world. In this case,
the fair value can be obtained simply by calculating the expected payo! under
the risk neutral distribution and discounting back to the initial date at the
riskless interest rate. Whenever risk neutral valuation is possible, any appro-
ximation procedure based on a probability distribution that approximates
the risk neutral distribution and converges to it in the limit can be used to
price options correctly. We can therefore use a trinomial lattice, or a
more complex structure, without losing the ability to compute unique option
values.

2.1. Approximation

Lattice models provide powerful, intuitive and asymptotically exact approxi-
mations to the theoretical option values under Black}Scholes assumptions for
American options and many other contingent claims that do not have closed
form valuation equations. However, using a discrete-time discrete-state lattice
for an asset whose price is actually generated by a logarithmic di!usion intro-
duces approximation error in two related but distinct ways, which we refer to as
distribution error and nonlinearity error.

Consider using a Trinomial model with N time steps to value a put option. At
any step n, the true asset price distribution is a continuous lognormal density,
but in the tree this is approximated by a "nite set of trinomial probabilities. By

2See, for example, Hull and White (1990).
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construction, the discrete and the continuous distributions have the same mean
and variance overall, but the discrepancy between them still produces distribu-
tion error in the option value.

Along with the probabilities, discreteness also a!ects the node values. One can
think of the value at a given node as representing the probability weighted
average option price over a range of the continuous price space around the
node. This is computed by multiplying the value of the option at that node's
asset price by the node probability. But if the option value function is highly
nonlinear, evaluating it at the single asset price for the node gives a poor
approximation to the average value over the whole interval around that node.
This produces nonlinearity error.

Fig. 1 illustrates the two sources of error graphically for a one year 100 strike
put option as of its expiration date when the initial asset price S

0
"100.3

Suppose the trinomial lattice has been set up with nodes 0.5 points apart at this
date. The "gure shows four nodes corresponding to stock prices of 99, 99.5, 100,
and 100.5. Viewed from date 0, the lognormal density in this region of the price
space is given by the heavy dashed line, and the nodes are indicated by the four
gray bars. Conceptually, the lattice breaks the continuous price space up into
discrete intervals associated with the nodes in the lattice. The light dashed bars
indicate how the true probability density is discretized over this price range. The
payo! on the put is shown by the heavy solid line (with the scale given on the
right y-axis). The contribution of a particular node to the time zero option value
equals the discounted value of the node probability times the option payo! at
the asset price for that node.

In the interval (99.25, 99.75] around the S"99.5 node, the option payo! is
linear, ranging from 0.75 at S"99.25 to 0.25 at S"99.75. The option value
of 0.5 at S"99.5 is the (unweighted) average payo! over the interval. However,
the true probability density is not constant in the interval: it is a little lower than
the lattice probability at the left end and a little above it at the right. In this
case, the node probability is too high at the higher option payo!s and too low
where the payo! is lower. This is distribution error, and it causes the lattice to
overestimate the average option payo! in this interval.

Now consider the interval (99.75, 100.25] around the strike price of 100.
Distribution error is still present, but now there is another considerably
larger error due to the nonlinearity in the payo! function. The option value
of zero at S"100 obviously understates the average option payo! in the
interval. Since the put payo! is linear at every stock price except 100, nonlin-
earity error at this date is entirely concentrated in the interval containing the
strike price.

3The other parameters for the example are r"10%, and p"0.25.
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Fig. 1. Distribution error and nonlinearity error around the at the money nodes. The solid line
represents the payo! on a one year, 100 strike European put option, with r"10% and volatility
0.25. The gray shaded bars represent nodes in the trinomial lattice, corresponding to stock prices of
99.0, 99.5, 100.0, and 100.5. The heavy dashed line represents the lognormal density over this region
of the price space. The light dashed bars indicate how the probability density is discretized over this
price range. The contribution of a particular node to the time zero option value equals the
discounted value of the node probability times the option payo! at the asset price for that node. The
distribution error arises from the di!erence between the heavy dashed line and the light dashed line.
At the S"100 node, the option value of zero understates the probability weighted average payo! in
this interval; this is the nonlinearity error.

In a binomial model, as one steps through the tree, the nodes at step n#1 fall
in the middle of the nodes in step n. For instance, both 99-step and 101-step trees
in this case would have nodes at about the same prices. With nonlinearity error,
this induces a peculiar `even}odda property to convergence that can be surpris-
ingly large. The trinomial also exhibits non-monotonic convergence, but not of
such a striking form.

Note that we distinguish between distribution error and nonlinearity error
because the Adaptive Mesh Model can minimize the latter over a given region of
the tree. However, both errors stem fundamentally from the nonlinearity of the
payo! function. For example, an instrument whose payo! is linear in the
underlying asset price, like a forward contract, has neither distribution error nor
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nonlinearity error in a properly designed lattice, as shown in Eq. (2):

C
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From the tree, the derivative instrument's value C
APPROX

is the expected value,
under the approximating distribution, of its payo! <(S

T
) discounted back to

time zero. Since <(.) is a linear function, the expected value operator can be
taken inside<(.). But by construction, the expected value of S

T
is the same under

the approximating distribution as under the true distribution, so the values for
the derivative must be equal.

2.2. The Trinomial model

The binomial model is very intuitive but it has little #exibility to deal with
more complex option problems. The Trinomial model has more degrees of
freedom and has proven to be more useful and adaptable for many derivative
applications. A trinomial tree is built to approximate the risk neutral distribu-
tion. Since the asset price is assumed to be lognormal, the tree is typically based
on the log of S. De"ne XH,ln(S), which implies that XH is normally distributed.
Under risk neutrality, XH follows the process

dXH(t)"a dt#p dz,

where a"r!q!p2/2, and q denotes the instantaneous rate of dividend
payout.

In a trinomial tree, over the next time step the underlying asset price is
allowed to move to one of three values, designated as up (u), down (d), and
middle (m). Associated with these branches are three risk-neutral probabilities,
p
6
, p

$
, and p

.
. For many applications, the rate of convergence is enhanced if the

tree is symmetrical. Therefore, for the "rst and third examples, we employ
a change of variables and de"ne X(t), the variable whose evolution the tree is set
up to approximate, by X(t),XH(t)!at. X(t) is the mean-adjusted value of the
log of the asset price. In other words, X(t) is the deviation of ln(S

t
) from its

expected value as of time 0.4
We set the middle node value to be no change and the up and down moves to

be of equal magnitude. Let k denote the length of a time step and h be the size of
an up or down move. Thus, over one time period X goes to X#h with
probability p

6
, to X!h with probability p

$
, and remains unchanged with

4Note that depending on how the procedures we describe below are implemented, when we refer
to an asset `pricea in the tree, it may actually be the log of the dollar price, possibly with the mean
subtracted. We assume it will be clear to the reader when and how the appropriate conversions need
to be done.
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probability p
.
. (This uses two of the six available degrees of freedom in setting

up the tree.)
The value of the time step k is determined by the option's maturity, ¹, and the

number of time steps to be used for the tree, N:

k"¹/N.

At each node, the system of three next period prices and three probabilities
must obey three constraints. First, the tree approximates the risk neutralized
asset price distribution, so for total expected return to equal the riskless interest
rate, the expected log price change per period must be ak, making the expected
change in X(t) zero. Second, the standard deviation must be consistent with the
known volatility of the underlying asset. Third, the probabilities must sum to
one.

This leaves one degree of freedom. As Cho and Lee (1995) and Gao (1996)
show, distribution error can be reduced if the trinomial tree is set up to match
higher moments of the normal distribution, beyond the mean and variance.
By choosing a symmetrical distribution, all odd-numbered moments of the
trinomial will be zero, as they are for the normal. We can therefore employ the
remaining degree of freedom to set the kurtosis in the tree equal to that of
the normal.

The resulting system has four equations in four unknowns:

1"p
6
#p

.
#p

$
,

E[X(t#k)!X(t)]"0"p
6
h#p

.
0#p

$
(!h),

E[(X(t#k)!X(t))2]"p2k"p
6
h2#p

.
0#p

$
h2, (5)

E[(X(t#k)!X(t))4]"3p4k2"p
6
h4#p

.
0#p

$
h4.

Solving Eq. (5) for the probabilities yields:

p
6
"1/6, p

.
"2/3, p

$
"1/6, h"pJ3k. (6)

Fletcher (1991, Chapter 4) examines the analogous case of an explicit "nite
di!erence PDE solution technique when what we call nonlinearity error has
been eliminated. He proves that in his framework, `high order convergencea is
possible, such that the approximation error goes to zero faster than with any
other set of probabilities.

As with the Binomial model, the option price is determined by starting at the
known asset price contingent payo!s at maturity and rolling backward through
the tree. Eq. (7) shows the calculation for a single node at date t and (mean-
adjusted log) price X:

C(X, t)"e~rk(p
6
(h, k)C(X#h, t#k)#p

.
(h, k)C(X, t#k)

#p
$
(h, k)C(X!h, t#k)). (7)
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Note that for generality, Eq. (7) allows for the possibility that the probabilities
may vary with h and k, even though in the current case of Eq. (6) they are "xed.

Nonlinearity error occurs in a lattice approximation when the true option
value does not change proportionally as the asset price changes between two
nodes. In this case, the option will have a large gamma (positive or negative) in
that price range. For a European option, nonlinearity error is greatest around
the strike price at expiration. It turns out that an American option's nonlinearity
error is also largely accounted for by the error in the last time step, for the prices
that bracket the strike price.5

The standard technique for reducing the approximation error in a lattice
model is to use "ner time steps. Unfortunately, this increases the number of
nodes rapidly. Designating the initial node as n"0, the Binomial model has
n#1 nodes at time step n, or [(N#1)2#(N#1)]/2"(N2#3N#2)/2 nodes
in total. A trinomial tree has 2n#1 nodes at each step, and (N#1)2 in total. If

h is proportional to Jk, to cut the size of the price step in half requires a tree
with four times as many time steps and about 16 times as many nodes. Thus
computation time increases sharply as greater accuracy is required.

The problem with increasing accuracy by using more time steps is that since
"ner resolution is often important only in one critical area, most of the addi-
tional computation may be largely wasted. What we would like in this case is
a high resolution "ne lattice in the region of the strike price at expiration, but
one that is coarse and fast to calculate everywhere else. We call such a hybrid
tree an Adaptive Mesh Model (AMM) and will now show how to construct one
for the put valuation problem.

3. The adaptive mesh model for the American put

Fig. 2, showing the section of the pricing lattice in the immediate vicinity of
the strike price in the last few periods before expiration, illustrates the Adaptive

5Prior to expiration, for the nodes around an American put's early exercise boundary, there will
be an approximation error with regard to where exercise will occur. But this does not translate into
signi"cant error in valuing the option. The `smooth pastinga property of the American option value
means that it is not highly nonlinear around the early exercise boundary.

One technique for reducing nonlinearity error in an American put lattice is to recognize that
`earlya exercise is impossible within the "nal time step before expiration. Thus the option is
European at that point in time. Broadie and Detemple (1996) suggest eliminating the nonlinearity
error at maturity by the simple expedient of substituting the Black}Scholes value for the option
price at every node in the second to last time step, and then rolling back through the tree using the
standard recursion shown in Eq. (7). While this does not take into account the possibility of
exercising an actual option during that "nal interval, the improvement in accuracy of the approxi-
mation is very striking. Of course, this approach requires the existence of a closed form solution for
the European option with one period to maturity.
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Fig. 2. An adaptive mesh model for the European put. This Trinomial tree shows the section of the
pricing lattice in the immediate vicinity of the strike price in the last few periods before expiration.
The coarse lattice, with price and time steps h and k, is represented by heavy lines. The "ne mesh,
with price and time steps h/2 and k/4, is represented by light lines. The "ne mesh covers all ¹!k
coarse nodes from which there are both "ne-mesh paths that end up in-the-money and "ne-mesh
paths that end up out of-the-money. K is the strike price, and X

K~
and X

K`
are the two date

¹ coarse-mesh asset prices that bracket the strike price.

Mesh trinomial tree that we wish to construct to value a put option. The coarse
lattice, with price and time steps h and k, is represented by the heavy lines. The
objective is to build a "ne-mesh tree around the strike price at expiration and
join it to the coarse tree so that the valuation information is transmitted
properly. Setting the "ne price steps to be h/2 and, therefore, the time steps to be
k/4 guarantees that "ne-mesh nodes will overlap coarse-mesh nodes one coarse
step before expiration. The "ne mesh is used to obtain the option values for these
overlapping nodes, labeled A

2
through A

5
, while option values for the other
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coarse-mesh nodes at this time step are computed in the usual way from the
terminal payo!s in the coarse lattice. This incorporates the more accurate
"ne-mesh values for the critical nodes into the coarse tree. Valuation then
proceeds by rolling back through the coarse lattice to the initial date.

As is clear from Fig. 2, the "ne mesh is only added for dates between ¹!k
and ¹, in the region around the strike price. To be precise, it must cover all
coarse nodes at date ¹!k from which there are both "ne-mesh paths that end
up in-the-money and "ne-mesh paths that end up out-of-the-money. For
example, there is no need to use the "ne mesh to obtain a value for node A

6
at

¹!k because every possible "ne-mesh path that would begin at that point
would end up out-of-the-money, at a node where the option payo! is linear.
However, from node A

5
, while the coarse-lattice paths all end up out-of-the-

money, a "ne-mesh path with only down moves between ¹!k and ¹ would
end up below K and in-the-money. Since it is around K that the option payo! is
nonlinear, the "ne-mesh value for node A

5
will be more accurate than what the

coarse mesh would have produced.
Let us denote the two coarse-mesh date ¹ asset prices that bracket the strike

price as X
K~

and X
K`

. As Fig. 2 shows, the "ne mesh starting at date ¹!k
coarse-mesh nodes must cover all of the time ¹ prices in the range from
X

K`
!2h to X

K~
#2h. This increases the number of nodes to be calculated in

this area from 12 in the coarse-mesh lattice to 52 in the "ne mesh (4 at date
¹!k, plus 9, 11, 13, and 15 for dates ¹!3/4k,2, ¹). Thus, even for
a trinomial tree with as few as 20 steps, introducing an adaptive mesh increases
the computational burden less than just adding one time step. In a 100-step
trinomial tree, adding one level of adaptive mesh increases the total number of
node calculations by less than 0.4%.

An important feature of the AMM approach is that it is isomorphic at
successive levels of re"nement. That is, once an AMM tree is constructed as in
Fig. 2, it is simple to add another level of still "ner mesh, with price steps of size
h/4, by following exactly the same procedure as we have just described for the
period ¹!k/4 to ¹. The total `costa of this further re"nement is just 40
additional node calculations.

Table 1 presents comparative performance statistics for the standard
Binomial and Trinomial models and the AMM with one and two levels of "ne
mesh added around the strike price at expiration. The models are used to
compute theoretical values, deltas, and gammas for a test set of 27 European put
options.6 European options are used to enable us to compare the accuracy of the
various approximations against an exact benchmark. Obviously, there would be
no need to use any of these methods to price European options in practice, but

6This is a standard test set that has been examined by Geske and Johnson (1984), among others.

S. Figlewski, B. Gao / Journal of Financial Economics 53 (1999) 313}351 323



Table 1
Performance of binomial, trinomial, and adaptive mesh models in valuing European puts

This table compares the performance of di!erent lattice-based approximation methods in comput-
ing the theoretical price, delta and gamma for a set of 27 European put options. Root mean squared
errors (RMSE) relative to the exact Black}Scholes values and computation times averaged over 10
identical runs for each set of parameters on a Dell Pentium Pro 200 MHz PC are displayed for the
Cox, Ross, and Rubinstein (1979) version of the Binomial model, the standard Trinomial model, and
the Adaptive Mesh Model with 1 and 2 levels of "ne mesh around the strike price at maturity
(denoted AMM-1 and AMM-2, respectively). The models are based on an initial stock price of 40,
a riskless interest rate of 5.0% (4.88% continuously compounded), and no dividends. The option test
set includes European puts with all 27 combinations of: strike prices of 35, 40, and 45; maturities of 1,
4, and 7 months; and volatilities of 0.20, 0.30, and 0.40.

Model Time Approximation RMSE Nodes Execution
steps time (s)

Price Delta Gamma

Binomial 25 0.020841 0.005805 0.001594 351 0.0060
Trinomial 25 0.012025 0.003337 0.000428 676 0.0090
AMM-1 25 0.002812 0.003345 0.000539 716 0.0117
AMM-2 25 0.000615 0.003359 0.000548 756 0.0121

Binomial 100 0.004929 0.001470 0.000197 5151 0.0451
Trinomial 100 0.002770 0.000846 0.000144 10201 0.0941
AMM-1 100 0.000600 0.000845 0.000140 10241 0.0961
AMM-2 100 0.000151 0.000854 0.000138 10281 0.0982

Binomial 250 0.002214 0.000534 0.000073 31626 0.2163
Trinomial 250 0.001360 0.000346 0.000061 63001 0.5407
AMM-1 250 0.000245 0.000334 0.000056 63041 0.5418
AMM-2 250 0.000057 0.000342 0.000056 63081 0.5428

Binomial 1000 0.000448 0.000145 0.000020 501501 3.0674
Trinomial 1000 0.000244 0.000079 0.000015 1002001 8.5623
AMM-1 1000 0.000056 0.000086 0.000014 1002041 8.5954
AMM-2 1000 0.000016 0.000085 0.000014 1002081 8.5854

the e$ciency gains shown in Table 1 are illustrative of what would be found for
American puts (see footnote 5).

The models are based on an initial asset price of 40, riskless interest of 5%
(corresponding to a 4.88% continuous rate), and no dividend payout. The 27
combinations include strike prices of 35, 40, and 45; maturities of 1, 4, and
7 months; and volatilities of 0.20, 0.30, and 0.40. The table shows the root mean
squared error for the computed values relative to the exact Black}Scholes
values, as well as the approximate execution time on a Pentium Pro 200 MHz
computer. (There is a small amount of noise in the very short execution time
estimates.) Lattices with 25, 100, 250, and 1000 time steps are examined.

The ability of the AMM approach to increase the accuracy of the price
computation with virtually no increase in execution time is striking. The
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AMM-2 model, for example, with only 25 time steps is much more accurate than
a standard Trinomial with 250 time steps, and only a little less accurate than
a 1000 step Binomial that requires about 250 times greater execution time.
Comparing across the models for a given number of time steps, we see that
computation times for the three trinomial-based models are about the same. The
Binomial runs distinctly faster, but it is only about half as accurate as
the standard Trinomial and much less accurate than the two AMM models. The
AMM-1 model is about four times as accurate as the standard Trinomial.
The AMM-2, with a second level of even "ner mesh, is about four times as
accurate as the AMM-1.7

The AMM approach has little e!ect on the delta and gamma calculations.
Note that we do not compute delta and gamma as numerical derivatives by
simply perturbing the starting asset price. As explained more fully below, that
procedure is rather inaccurate and is greatly a!ected by the nonlinearity error
problem. Instead, following Pelsser and Vorst (1994), we extend the tree back
one period prior to the initial date and calculate the `Greek lettersa from the
node values within the extended tree. The computations then involve di!erenc-
ing option values at asset prices exactly one price step apart. Since nonlinearity
error at expiration a!ects both option prices similarly, its e!ect is greatly
reduced by the di!erencing. Section 5 examines the calculation of delta and
gamma more carefully and shows how another AMM technique, this time
applied to the initial nodes in the tree, can improve estimates of the Greek letter
risk exposures.

4. An adaptive mesh model for barrier options

The previous section demonstrated that signi"cant improvements in accuracy
can be obtained with very little increase in computation time by adding a small
section of "ne resolution mesh in a single critical region of an option valuation
lattice. This section shows how the AMM approach can be extended for use with
barrier options and similar instruments whose values depend on whether the
asset price reaches a speci"ed level at any point during the option's life.

As the derivatives market has expanded, new instruments have been created
with a wide variety of early exercise features and other more exotic contingencies.

7These results indicate a convergence rate both in the standard lattice models and as additional
levels are added to the AMM that is approximately proportional to the "nest time step (rather than
to the price step, which only goes down with the square root of the time step). The e!ect of
nonlinearity error on the option value is a function of the price step size times the probability of
reaching the particular nodes where the error occurs, and that probability also falls with the square
root of the time step. Thus, adding one level of "ne mesh cuts the time step by a factor of four also
reduces nonlinearity error by about a factor of four.
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Closed-form solutions exist for some `plain vanillaa European instruments, but
numerical approximation is frequently the only available valuation technique.
Lattice-based methods for many such options can be enhanced enormously by
an appropriate AMM procedure. This is particularly important for computa-
tionally intensive procedures like calculating implied volatilities.8

We apply the AMM technology to the common but di$cult problem of
pricing a barrier option when the initial asset price lies close to the barrier.
A typical barrier option pays o! at expiration like an ordinary call or put, except
that the payo! is contingent upon whether the underlying asset price has
reached the speci"ed barrier price at some earlier point during the option's
lifetime. For example, a `down-and-outa call option with strike price K and
barrier price H (known as the `out-strikea) has the same payo! at expiration as
a European call, if the stock price stays above H throughout its entire life. But if
the price ever falls to H or below, the option is `knocked-outa and expires
worthless, regardless of the underlying asset price at expiration. Such a contract
is often known as a `knock-outa option and the out-strike is the `knock-out
barriera. Barrier options have become widespread, particularly for foreign
currency contracts. There are also a variety of other instruments with similar
kinds of contingent payo!s, including capped options, ladder options, and
interest rate corridors.9

4.1. Valuing barrier options with a trinomial model

Nonlinearity error presents great di$culty for valuing these instruments with
standard lattice-based techniques because price discreteness in the tree interacts
with the price barrier. Convergence typically exhibits a choppy pattern similar
to the even-odd behavior of the Binomial model for regular options. We will use
the European down-and-out call option to illustrate the valuation problems of
barrier options and the use of the AMM to deal with them. Notation is as above,
with the addition of the symbol H to denote the option's knock-out barrier
(H(S).

One advantage of this example is that there is a closed-form valuation
equation that can serve as our benchmark for evaluating accuracy. Merton

8Calculating implied volatilities, even for ordinary American calls and puts, requires extensive
computation to solve the valuation model repeatedly for each option. For example, when Canina
and Figlewski (1993) used a 500 time step Binomial model to obtain implied volatilities for about
17,000 stock index calls, the required CPU time on a VAX mainframe computer was approximately
one week. Obviously, computer speeds have increased since that time, but so has the complexity of
derivative instruments.

9Rubinstein (1991) describes a number of exotic option contracts, many of which have barriers.
Brief explanations of a vast array of traded derivative products, including many with various kinds
of barrier features, are given in Gastineau and Kritzman (1996).
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(1973) derives the following solution:

C
DO

(S, K, ¹, r, p, H)"C
BS

(S, K, ¹, r, p)!(H/S)2(r~(p2@2))

]C
BS

(H2/S, K, ¹, r, p), (8)

where C
DO

denotes the down-and-out call value and C
BS

is the Black}Scholes
call formula.

The knock-out barrier is a "xed asset price over the option's lifetime. To have
each layer of nodes fall at the same price in every time step, a trinomial tree for
pricing barrier options is typically set up slightly di!erently from the one
examined above. For example, to have the out-strike exactly 2 price steps below
the initial asset price at every date, the tree must be built around the initial log
stock price without adjusting for the mean. We therefore set X(t)"ln(S

t
) for all

t. In this tree, keeping the middle node as no change and the up and down moves
equal to h, the probabilities must now be changed so that the mean and variance
in the tree match the risk neutral distribution. It is no longer possible to match
the kurtosis too.

The conditions expressed in Eq. (5) must be modi"ed. The expected value over
one step must now be equal to ak and the second moment must be a2k2#p2k.
The equation for the fourth moment is dropped and value for h is set separately.
This results in three equations in three unknowns, that can be solved to give the
probabilities as:

p
6
(h, k)"1

2
(p2(k/h2)#a2(k2/h2)#a(k/h)),

p
$
(h, k)"1

2
(p2(k/h2)#a2(k2/h2)!a(k/h)),

p
.
(h, k)"1!p

6
(h, k)!p

$
(h, k). (9)

The size of the price step, h, is the remaining free parameter in the tree. But
once k is set, not every h value will produce nonnegative probabilities for all
three nodes in Eq. (9). In general, both k and h will be far below 1, so

p
.
"1!p

6
!p

$
+1!p2k/h2. (10)

To guarantee nonnegativity for the probabilities, h should be of the same order

as Jk. De"ne a free parameter j'1 such that

j"h2/p2k. (11)

A judicious choice for j can improve the convergence properties of a tree
substantially. We saw above that j"3 is a good choice for ordinary options, so
we take that as the target value here as well.

Consider using the standard Trinomial model as given by Eqs. (7) and (9) to
value a down-and-out call with the following parameter values:

S"100, K"100, ¹"1 year, r"10%, p"0.25, H"90.
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Fig. 3. Price of a down-and-out option using the standard trinomial method. A standard trinomial
model is used to value a down-and-out call with the following parameter values: S"100, K"100,
¹"1 yr, r"10%, volatility"0.25, and H"90. The horizontal line indicates the theoretical
option value of 11.323, computed using Merton's (1973) analytical formula (Eq. (8)). The jagged line
represents the trinomial model's approximation of the option value using di!erent numbers of time
steps.

Fig. 3 shows the convergence to this option's theoretical value of 11.323, as
given by Eq. (8). As the number of time steps increases, the approximation
approaches the correct price and then suddenly jumps away from it. Even with
more than 1000 time steps (more than one million node calculations), the typical
error is still unacceptably large.

The source of this problem is easily visible in Figs. 4 and 5. In Fig. 4, the
barrier lies just slightly less than two price steps below the current asset price, so
the option is knocked out if the price falls two steps below the initial price at any
time prior to expiration. In Fig. 5, however, an increase in the number of time
steps has reduced the price step just enough that two down moves still leaves the
asset price a little short of the barrier. Three down moves will now be needed to
knock out the option, which is a distinctly lower probability event. Thus, a small
increase in the number of time steps has led to a very small change in the size of
the price step, but within the lattice this produces a signi"cant drop in the
probability of the option being knocked out and therefore a sharp jump in its
estimated value. Because the e!ective barrier (three price steps) lies further from
the initial price than the true barrier, the down-and-out option will be over-
valued by a lattice model. By the same token, an `ina option that pays o! at
maturity only if the barrier has been previously reached will generally be
undervalued.

The ideal situation is for the barrier to coincide with a layer of nodes so that,
within the framework of the discrete lattice, the approximate option value
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Fig. 4. A trinomial model for a barrier option. The barrier, H, lies just slightly less than two price
steps below the current asset price, S. The option is knocked out if the price falls two steps below the
initial price at any time prior to expiration.

incorporates an accurate estimate of the probability of hitting the barrier. This
problem has been examined in the literature, and some creative solutions have
been o!ered. One approach is to notice that since the size of the price step
depends on the number of time steps, accurate valuation can be obtained simply
by choosing the right value for N, as Fig. 3 illustrates. For example, Boyle and
Lau (1994) show how to compute the sequence of optimal N values for a bi-
nomial tree. However, with only the limited freedom available in the Binomial,
the method can not be extended to deal with greater complexity, such as
multiple or time-varying barriers. Ritchken (1995) shows that for a trinomial
barrier option model, performance can be enhanced signi"cantly by restricting
j to be a value that produces an integer number of price steps between the
current asset price and the barrier. We refer to that approach as the &Restricted
Trinomial Model' (RTM). With more degrees of freedom than the Binomial, the
RTM can be "tted to match a second barrier also, but further generalization
typically does not work.

These techniques face the greatest di$culty when the asset price is close to the
barrier. For the barrier to coincide with a layer of nodes (and the contract not to
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Fig. 5. A trinomial model with a shorter time step for a barrier option. This Trinomial model has
one more time step than the model in Fig. 4. Consequently, the barrier, H, lies slightly more than two
price steps below the current asset price S. The price must fall at least three steps below the initial
price for the option to be knocked out. The probability that the price will fall three steps is less than
the probability it will fall two steps. This model therefore produces a higher option value than the
model in Fig. 4.

be already knocked-out) there must be at least one price step from the initial
price to the barrier. But this imposes a maximum value for the price step h, equal
to ln(S

0
)!ln(H). The price step, in turn, leads to a maximum time step, and

therefore a minimum N that may be very large.
Consider valuing the down-and-out call described above with all of the same

parameter values except that the current asset price is much closer to the barrier.
For example, if S

0
"90.5 the maximum price step that permits one down-move

before hitting the barrier is h"ln(S
0
)!ln(H)"ln(90.5)!ln(90)"0.00554.

Setting j"3 and plugging these values into Eq. (11) gives k"0.000164.10 The

10 If there are 250 trading days to a year, and 7 trading hours in a day, a k value of 0.000164 years
translates to a maximum time step of approximately 17.2 trading minutes. Alternatively, if every
minute in the 365 day year were treated the same, whether the market is open or closed, this value of
k produces a time step of 86.2 calendar minutes.
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resulting tree therefore has 1/k"6108 time steps, which requires over 37 million
node calculations. If one wanted a more accurate valuation, with two price steps
to reach the barrier (which would be needed for an accurate estimate of gamma),
the tree would have to have four times as many time steps (24,432) and almost
600 million nodes.

This leads to very slow convergence of the standard Trinomial for this
problem. Even with 1000 time steps, the pricing error is unacceptably large: The
estimated option value is 1.102 while the true value from Eq. (8) is 0.642, i.e.,
a 71.7% mispricing. The choppy convergence pattern seen in Fig. 3 does not
produce nearly correct valuation for any relatively low N. The option value hits
the minimum (most correct) value, and then jumps, when the number of price
steps to reach the barrier changes. For this tree, the "rst jump does not occur
until N"6109, and the second is at N"24,436.

4.2. Constructing an AMM lattice for a barrier option

An AMM can resolve this problem by constructing a section of high resolu-
tion lattice with the necessary "ne price steps in the relevant region next to the
barrier and joining it to a coarser lattice that allows e$cient computation
elsewhere. The #ow of pricing information here is di!erent than for the put
option case, in which the "ne mesh passed information `upwarda to the coarse
mesh. Here, the information #ows from the coarse mesh downward to the "ne
mesh, allowing the barrier option to be valued properly at a stock price that is
less than one coarse price step away from the barrier.

Fig. 6 shows the structure of the AMM tree that we wish to construct. The
heavy lines indicate the coarse-mesh lattice, whose nodes are labeled A

ij
, with

i indicating the number of coarse-mesh price steps above the barrier and j
the number of the coarse time step. Thus, A

00
refers to the node falling on the

barrier at date t"0, and A
10

is the price that is one coarse-mesh step above the
barrier at date t"0. The "ne-mesh nodes are indicated by the letter B. We wish
to compute the value of the down-and-out call at node B

10
, which lies one half of

a coarse-mesh price step above the knock-out price, i.e., at ln(H)#h/2, at date
t"0.

Here is a brief overview of the process. The "rst task is to construct the
coarse-mesh lattice and to compute option values at all of the A nodes. Next, the
coarse mesh is used to compute option values at ln(H) and ln(H)#h, for time
intervals of length k/4 (following the dotted lines). These are the nodes that
anchor the "ne mesh to the coarse mesh. Finally, we "ll in the remaining
"ne-mesh nodes for the price ln(H)#h/2 at time steps of k/4 (the "ne solid lines),
culminating in the desired option value at node B

10
.

We now describe these steps in more detail. Since we want B
10

to correspond
to the initial asset price, the value of h must be set to exactly 2(ln(S

0
)!ln(H)).

This determines the asset price for the coarse-mesh lattice beginning at node
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Fig. 6. Adaptive mesh model for a barrier option. The heavy lines indicate the coarse-mesh lattice,
whose nodes are labelled A

ij
, with i indicating the number of coarse-mesh price steps above the

barrier and j the number of the coarse time step. The "ne-mesh nodes are labelled B
ij
. The barrier

price is ln(H). To compute the option value at the initial asset price of B
10

, "rst compute option
values at all the A nodes. Second, use the coarse-mesh lattice to compute the option values at ln(H)
and ln(H)#h for time intervals of k/4. Finally, calculate the remaining "ne-mesh nodes for the price
ln(H)#h/2 at time intervals of k/4. The dotted lines indicate that nodes A

01
, A

11
, and A

21
, are used

to calculate option values at B
21

, B
22

and B
23

. Similarly, the light solid lines indicate, for example,
that the option value at node B

10
is based on nodes B

01
, B

11
, and B

21
. The "ne dotted line indicates

where the middle nodes of the next level of mesh would be placed to compute the option value at the
initial asset price C

10
.

A
10

. Once the time step is set, as described below, the rest of the coarse lattice is
"lled out in the normal way.

The next step is to compute the option values for the points where the "ne
mesh is connected to the coarse mesh lattice. These B

0j
and B

2j
nodes lie along

the barrier and at one price step h above the barrier, at time steps of length k/4.
In this example, option values at the B

0j
nodes are all zero, since they fall on the

knock-out barrier.11

11Some barrier options pay a `rebatea R when they are knocked out, in which case the B
0j

values
are set to R. In cases with more complex behavior at the barrier, it may be necessary to solve for the
B
0j

lattice values, using the same procedure as we describe for the B
2j

nodes in this tree.
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The B
2j

nodes that overlap A nodes are also known from the coarse lattice,
e.g., the nodes that would be labeled B

24
and B

28
are the same as A

11
and A

12
(to limit clutter, they are not labeled separately in the "gure). But the nodes like
B
23

that lie between coarse-mesh time steps require special handling. As
Fig. 6 indicates, these are calculated from the nearest A nodes in the immediately
subsequent time step. Thus B

21
, B

22
, and B

23
are all obtained from A

01
, A

11
and

A
21

, while B
25

, B
26

, and B
27

(not labeled) are derived from A
02

, A
12

, and A
22

.
This simply involves rolling backward using Eq. (7), with the only di!erence
being that each of the B

2j
nodes, falling on dates that are k/4, 2k/4, and 3k/4

before a coarse lattice time step, has its own set of up, middle, and down
probabilities. These are obtained by replacing k in (9) by the appropriate
e!ective time step size for that node, i.e., 3k/4 for a B node like B

21
, 2k/4 for B

22
,

and k/4 for B
23

.
For example, consider B

23
. From Eq. (9), we have

p
6
(h, k/4)"

1

2Ap2
k/4

h2
#a2

k2/16

h2
#a

k/4

h B,

p
$
(h, k/4)"

1

2Ap2
k/4

h2
#a2

k2/16

h2
!a

k/4

h B,
p
.
(h, k/4)"1!p

6
(h, k/4)!p

$
(h, k/4). (12)

Plugging into Eq. (7) gives

C(B
23

)"e~rk@4(p
6
(h, k/4)C(A

21
)#p

.
(h, k/4)C(A

11
)#p

$
(h, k/4)C(A

01
)),

(13)

where for convenience the notation has been adjusted to indicate explicitly the
node to which the call value function C(.) applies. Option values at the other
B
2j

nodes are computed in similar fashion using Eq. (9) with the appropriate
multiple of k/4 for the time step.

Finally, when the B
0j

and B
2j

node values have been obtained for all j, we "ll
in the B

1j
values by de"ning a third set of probabilities, for price steps of size h/2

and time steps of k/4. Since the dominant term in Eq. (9) is the one containing
k/h2, these probabilities will be almost the same as for the coarse mesh. The up,
middle, and down probabilities used in calculating a B

1j
node are given by

p
6
(h/2, k/4)"

1

2Ap2
k

h2
#a2

k2/4

h2
#a

k/2

h B,

p
$
(h/2, k/4)"

1

2Ap2
k

h2
#a2

k2/4

h2
!a

k/2

h B, (14)

p
.
(h/2, k/4)"1!p

6
(h/2, k/4)!p

$
(h/2, k/4).
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To "ll out these middle nodes, one must start from the expiration date and roll
back through the tree with the normal recursion. This eventually gives the node
B
10

option value as

(B
10

)"e~rk@4[p
6
(h/2, k/4)C(B

21
)#p

.
(h/2, k/4)C(B

11
)

#p
$
(h/2, k/4)C(B

01
)]. (15)

4.3. Setting the coarse mesh time step

Having shown how to construct the "ne-mesh AMM lattice given the coarse-
mesh tree, we now return to the coarse tree. It must be set up carefully to satisfy
two conditions. First, as discussed above, the "ne mesh must place the current
asset price exactly one price step above the barrier, meaning

h"2(ln(S
0
)!ln(H)). (16)

Second, the number of coarse-mesh time steps in the tree, N"¹/k, must be an
integer. Note that by setting the coarse time step correctly, all "ner mesh
sub-lattices will also have integer numbers of time steps.

The values of h and k have been linked through Eq. (11) to the parameter j,
which we set equal to 3 in the "rst example. For a barrier option, h and k must
obey separate constraints, so the choice of j is no longer free. Referring to it as
the `stretcha parameter, Ritchken (1995) discusses how to choose j to create
a tree with a layer of price nodes that lies exactly on the out-barrier and an
integral number of time steps.12

We need a variant of the procedure in this case, because the constraints are on
the "ne-mesh price step and the coarse-mesh time step. If j is "xed at 3 (or at any
other constant value), the price step from Eq. (16) normally does not produce an
integral number of time periods in the option's life, so the tree must be stretched
a little to "t properly. A simple procedure that changes j only slightly is to
calculate the noninteger number of steps the target j would yield and then
lengthen the time step just enough to eliminate the rounding error.

For example, setting j"3, k
0
"h2/3p2. Let N

0
"¹/k

0
be a noninteger

number of length k
0
time steps in the option's lifetime. Eliminating the fractional

step, the adjusted tree is built to have N"int(N
0
) steps of length k"¹/N. The

resulting time step will be marginally longer than that produced by j"3, but
the di!erence will be negligible for a typical lattice. (The step length increases by
a fraction less than 1/N, so k!k

0
(k

0
/N.) The time step calculation can be

expressed in a single general equation as

k"¹/int[(jp2/h2)¹]. (17)

12Ritchken actually de"nes j slightly di!erently than we do: his j is the square root of the j given
in Eq. (11).
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4.4. The general AMM for a barrier option

This procedure shows how to construct an AMM lattice with one level of "ner
mesh at the knock-out barrier. Further re"nement is easily introduced by using
the identical approach to add additional levels of progressively "ner mesh. The
price step at each successive level will be half as large as at the previous one. The
"ne dotted line in Fig. 6 indicates where the middle nodes of the next level of
mesh would be placed, in order to compute the option value at the initial asset
price C

10
.

The general AMM methodology for a barrier option is therefore the follow-
ing. First choose M, the number of levels of "ne mesh to be constructed. For the
above example, M"1. Computing the option value at C

10
would involve

a second level of "ne mesh, making M"2. The "nest mesh price step is set to
ln(S

0
)!ln(H), making the coarse mesh step h equal to

h"2M(ln(S
0
)!ln(H)). (18)

The coarsest mesh time step k is given by Eq. (17). First, the coarsest (A level)
lattice is constructed starting at the initial (log) asset price X"ln(H)#h. Then
the "ner levels (B, C, etc.) are added one at a time, following the procedure
outlined above.

It is important that a numerical approximation be consistent, meaning that as
the step size shrinks to zero, the option value from the model converges to the
true continuous-time continuous-state theoretical value. The Appendix provides
a proof of consistency for this AMM model. The method of proof is straightfor-
ward and can easily be applied to other AMM structures.

It is easy to see from Fig. 6 how many additional calculations are required to
add a layer of "ne mesh to a trinomial lattice. Consider the three layers in the
B level. Along the upper and lower layers, for each coarse time step there are
three new values to be computed for the B nodes that do not overlap coarse
mesh nodes, e.g., B

01
, B

02
, B

03
, B

21
, B

22
, and B

23
. The middle B layer is entirely

new, so there are four new nodes per coarse time step. The total for the "rst layer
of "ner mesh is therefore 3#3#4"10 new nodes per time step, or 10N in
total. Thus for a 100-step lattice that contains 1012"10,201 nodes, an AMM
with a single level of "ne mesh would add 1000 new nodes, making a total of
11,201. In contrast, increasing the resolution of a standard Trinomial model by
halving the price step (and multiplying N by 4) would require increasing the
total number of nodes to 4012"160,801.

Adding further levels of "ne mesh requires ten new nodes for each time step of
the next higher level. Thus the C level mesh in Fig. 6 requires 40 new nodes per
coarse mesh time step and, in general, the mth level adds 10]4m~1]N new
nodes. Table 2 shows the number of nodes in an AMM lattice as "ner levels of
mesh are added and compares it to the number in a standard Trinomial model
with the same mesh size everywhere. It is obvious that re"ning the standard
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Table 2
Comparison of the number of nodes in a barrier option adaptive mesh model versus a standard
trinomial model with the same sized price step as the "nest level AMM mesh

This table compares the number of nodes in a barrier option AMM model with that in a standard
Trinomial model. In each case, the Equivalent Trinomial model is con"gured to have the same sized
price step as the "nest AMM mesh. Di!erences are compared across models with 25, 100, and 400
time steps to maturity.

Model N"25 N"100 N"400

Standard trinomial 676 10,201 160,801

Adaptive mesh, M"1 926 11,201 164,801
Equivalent trinomial 10,816 163,216 2,572,816

Adaptive mesh, M"2 1926 15,201 180,801
Equivalent trinomial 173,056 2,611,456 41,165,056

Adaptive mesh, M"3 5926 31,201 244,801
Equivalent trinomial 2,768,896 41,783,296 658,640,896

Adaptive mesh, M"4 21,926 95,201 500,801
Equivalent trinomial 44,302,336 668,532,736 10,538,254,336

Trinomial to price barrier options near the boundary rapidly requires un-
manageably large numbers of calculations. Of course, the higher resolution
throughout the lattice produces smaller distribution approximation errors for
the standard Trinomial than for the AMM, but there will be little di!erence
between them in the nonlinearity error. That is largely determined by the size of
the price step immediately adjacent to the barrier, which is the same for both
models.

Table 3 shows how this di!erence translates into computation time for the
RTM and the AMM. We value a one year down-and-out call with a strike price
of 100 and an out-strike H"90 for a sequence of initial stock prices that
approach the barrier. In each case, the AMM uses a coarsest price step of about
2 points, but adds successive layers of "ne mesh for asset prices closer to the
barrier, while the RTM is constructed to have a price step equal to
ln(S

0
)!ln(H).13 (Computation times are for a personal computer with

a 90 MHz Pentium processor and 32 megabytes of RAM.) The RTM computa-
tion became unmanageable (though not actually impossible) at an asset price of
901

8
because of the size of the lattice, while the AMM reached accurate answers

almost instantaneously in every case. Note that the general rule that halving
the price step increases the number of time steps by a factor of 4 and the

13Since the price step is de"ned in terms of the log of the price, the dollar values mentioned here
are exact only at the barrier: it is h that is constant throughout the tree.

336 S. Figlewski, B. Gao / Journal of Financial Economics 53 (1999) 313}351



Table 3
Pricing a down-and-out call option with the AMM and the restricted trinomial model when the
asset price is near the boundary

This table shows the analytic down-and-out call value from (8) and approximate values from the
restricted trinomial model (RTM) and the adaptive mesh model (AMM). The RTM constructs
a lattice with the same price step size everywhere and with a layer of nodes exactly on the knock-out
boundary, one price step below the initial asset price. The AMM maintains the same size price step
for the coarsest mesh but adds layers of "ner mesh as the initial asset price approaches the barrier.
M represents the number of layers of "ner mesh. S

0
is the initial asset price. The parameter values

are: K"100, r"10%, ¹!t"1 yr, p"0.25, and H (barrier)"90. Computation time in seconds
is for a PC with a Pentium 90 MHz processor and 32 megabytes of RAM. N/A indicates that the
problem became unmanageable for the computer, as described in the text.

S
0

Analytic RTM AMM
value

Value Number of
time steps

CPU
time (s)

Value AMM
level

CPU
time (s)

92 2.506 2.507 388 0.033 2.507 0 0.033
91 1.274 1.274 1535 0.750 1.274 1 0.050
901

2
0.642 0.642 6108 12.35 0.643 2 0.059

901
4

0.323 0.323 24,367 364.3 0.323 3 0.117
901

8
0.162 N/A 97,335 N/A 0.162 4 0.317

total number of node calculations by a factor of 16 does not allow us to
assume computation times will increase proportionally. As the size of the
lattice increases, it becomes impossible to keep the whole tree in fast computer
memory at one time and computation speed slows sharply. We therefore did not
undertake the extensive reprogramming that would have been required to solve
the RTM model starting at S"901

8
.

5. An AMM for calculating delta and gamma

Academics tend to focus on derivative valuation, but in practice option
pricing models are more important for risk management than for valuation.
Traders adjust the volatility and other input parameters to make the model
values match observed market prices. The most important risk exposures are
measured by delta, the change in the option value for a small change in the asset
price, and gamma, the change in delta. In a closed-form valuation model, these
`Greek lettera risks can typically be obtained in closed-form also, as

D"LC/LS,

C"LD/LS"L2C/LS2. (19)
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There are a variety of ways to estimate delta and gamma in a lattice model,
some of which are distinctly better than others in terms of accuracy and speed of
convergence. This section discusses the di!erent standard approaches, all of
which are subject to the e!ects of nonlinearity error, and then shows how
accuracy can be enhanced by an AMM technique.

5.1. Delta and gamma in the trinomial model

In the binomial model, the number of shares in the replicating portfolio
provides one estimate of delta. In contrast, the Trinomial is not based on option
replication, and there is no comparable delta estimate. The most common
technique for estimating delta and gamma in a trinomial model is to perturb the
initial (log) price by some small amount, e, and build new trees starting from
X

0
#e and X

0
!e. Unfortunately, nonlinearity error makes the estimates very

noisy and, like the option price, they converge to the true values non-monotoni-
cally. Another major shortcoming is that the entire tree must be computed
a second time to get delta and a third time to get gamma (or to get a delta
centered on the initial asset price).

Since the perturbations are in log prices, the delta and gamma calculations
must include the appropriate conversions, as follows:

D"

LC

LS
"

LC

L ln(S)

1

S
+

C(X
0
#e)!C(X

0
!e)

2e
1

S
,

C"

LD

LS
"

L2C
LS2

"

L
LSA

LC

Lln(S)

1

SB"A
L2C

L(ln(S))2
!

LC

Lln(S)B
1

S2

+A
C(X

0
#e)#C(X

0
!e)!2C(X

0
)

e2
!

C(X
0
#e)!C(X

0
!e)

2e B
1

S2
.

(20)

Pelsser and Vorst (1994) discuss the problem of obtaining delta and gamma
for a Binomial model and propose an alternative technique that increases
e$ciency markedly. Rather than starting from the initial asset price at time 0,
they begin two time steps earlier and build the tree so that the middle node at the
end of the tree's second period (time 0) falls at the desired starting asset price.
This extended tree has three nodes at time 0, which permits calculating both
delta and gamma centered on the right point in time. The method improves
accuracy considerably, but its shortcoming is that the perturbation of the asset
price is now one full price step in the lattice.

Fig. 7 illustrates economizing on extra calculations by extending the trinomial
tree backwards in time. To obtain three asset prices for date 0, a Trinomial only
needs to be extended backward for one period. The dashed lines indicate the
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Fig. 7. Extending the tree to compute delta gamma. The trinomial tree is extended backward one
period. The dashed lines indiate the new sections of lattice that must be added to the original tree.
This produces three time zero option values at asset prices X

0
, X

0
#h, and X

0
!h, from which

delta and gamma can be calculated, without the necessity of constructing two new complete trees.

new sections of lattice that must be added to the original tree. It is apparent why
extending the tree can be much more e$cient than simply perturbing the initial
asset price. Two-sided perturbations requires two new trees to be constructed
starting from the perturbed time zero asset prices, but in Fig. 7, these trees
overlap the existing lattice almost entirely. Only two new nodes are required
at each time step from 0 to ¹, a total of 2N#2. (Since our real interest is in
time 0, there is no need actually to compute a time t"!k option price.) Delta
and gamma values are obtained from Eq. (20) with the price step h substituted
for e.

5.2. Relative performance of the standard methods in estimating Greek letter risks

Table 4 compares these alternative approaches for estimating delta
and gamma in the standard trinomial model. The table is set up like Table 1
and uses the same test set of 27 European put options. We report root
mean squared errors relative to the exact values from the Black}Scholes
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Table 4
Performance of the trinomial model in estimating delta and gamma for European puts

The table compares the performance of di!erent approaches for estimating delta and gamma in the
standard Trinomial model. `Perturbationa involves constructing new trinomial trees beginning
from time 0 asset prices that are above and below the original (log) price X

0
by an amount e, for

e"0.001 or 0.01. Delta and gamma are estimated as numerical derivatives using the option values
obtained from the new trees in Eq. (20). `Tree extensiona involves building the valuation tree starting
one time step before time 0, so that it produces option values at time 0 for asset prices X

0
, X

0
#h,

and X
0
!h, as shown in Fig. 7. These are then used in Eq. (20) to calculate numerical derivatives.

D"

LC

LS
"

LC

Lln(S)

1

S
+

C(X
0
#e)!C(X

0
!e)
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1
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L2C
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0
#e)!C(X

0
!e)

2e B
1

S2
. (20)

The models are based on an initial stock price of 40, a riskless interest rate of 5.0% (4.88%
continuously compounded), and no dividends. The option test set includes European puts with all 27
combinations of: strike prices of 35, 40, and 45; maturities of 1, 4, and 7 months; and volatilities of
0.20, 0.30, and 0.40. Root mean squared errors relative to the exact Black}Scholes values and
computation times on a Dell Pentium Pro 200 MHz computer are displayed for the same test set of
27 European put options as in Table 1. The execution time is the average from 10 identical runs for
each set of parameters. N is the number of time steps to maturity.

Model Approximation RMSE Execution
time (s)

Price Delta Gamma

N"25
Trinomial perturbation, e"0.001 0.012025 0.034958 0.499567 0.0200
Trinomial perturbation, e"0.01 0.012025 0.020866 0.101378 0.0200
Trinomial tree extension 0.012025 0.003337 0.000428 0.0100

N"100
Trinomial perturbation, e"0.001 0.002770 0.015642 0.242340 0.2810
Trinomial perturbation, e"0.01 0.002770 0.006151 0.044298 0.2800
Trinomial tree extension 0.002770 0.000846 0.000144 0.0920

N"250
Trinomial perturbation, e"0.001 0.001360 0.009286 0.242539 1.5820
Trinomial perturbation, e"0.01 0.001360 0.001689 0.026351 1.5830
Trinomial tree extension 0.001360 0.000346 0.000061 0.5298

N"1000
Trinomial perturbation, e"0.001 0.000244 0.004631 0.120938 24.6160
Trinomial perturbation, e"0.01 0.000244 0.000656 0.004602 24.6650
Trinomial tree extension 0.000244 0.000079 0.000015 8.1918

340 S. Figlewski, B. Gao / Journal of Financial Economics 53 (1999) 313}351



formula, as well as execution time on a Pentium Pro 200 MHz personal
computer (averaged over 10 runs for each set of parameters). Results are shown
for 25, 100, 250 and 1000 step trees.

Since the procedure for calculating Greek letter exposures does not change
the original valuation tree, the RMSE for the option price is the same for all
variants. The "rst two lines for each value of N use perturbation to compute
numerical derivatives. Building two additional complete trees should take at
least three times as long as simply pricing the option. We also see an interesting
e!ect with regard to the size of the perturbation. Using a very small value,
e"0.001, produces much less accurate deltas and, especially, gammas than
using a larger value, e"0.01. This is because dividing by a very small e in taking
the numerical derivatives magni"es the e!ect of the nonlinearity error. Thus, it
can be counterproductive to use very small perturbations in estimating the
Greek letter risk exposures. The third line gives results for the method of
extending the tree backwards in time. This is considerably more e$cient in
terms of computation time than the perturbation approaches, and it also gives
much more accurate results, especially for gamma.

Unfortunately, the problem of nonlinearity error still remains. This can partly
be mitigated by the use of an AMM model to add a section of "ne mesh around
the strike price at expiration, as demonstrated in Section 3. But there is still
a di$culty at time 0, because to compute delta and gamma one must either solve
three complete lattices with a small e perturbation or else extend the tree and
compute them from nonmarginal asset price changes.

5.3. Building an AMM model to compute delta and gamma

This section shows how an AMM model with a region of "ne mesh around
the initial asset price allows numerical derivatives to be computed using as small
an e perturbation as we like with only a minor increase in the total number of
node calculations. Fig. 8 shows a lattice set up much like the one in Fig. 7, with
perturbation trees that overlap the original one and add new nodes only at the
highest and lowest prices in each period. The di!erence here is that these new
sections of lattice begin at time 0 at asset prices of X

0
#h/2 and X

0
!h/2, that

is, at deviations from the original price X
0

that are half as large as in the
extended tree of Fig. 7.

To do this, we introduce quadrinomial branching for these two nodes. In the
original lattice, starting from X

0
there are paths going up to X

0
#h, down to

X
0
!h, and in between to remain at X

0
in the next period. The extended tree

would add a time 0 node at the price X
0
#h, from which branches would lead to

X
0
#2h, X

0
#h, and X

0
. The quadrinomial branching for the new node we are

placing at X
0
#h/2 allows for price changes to any of the four second period

nodes that could be reached from either X
0

or X
0
#h. The modi"ed tree cuts

the perturbation used in the delta and gamma calculation in half, but requires
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Fig. 8. AMM level 1 for computing delta and gamma. The trinomial tree is extended with a region of
"ne mesh around the initial asset price. The dotted lines indicate the new sections of lattice to be
added only at the highest and lowest prices in each time step. The new sections of lattice begin at
time 0 at asset prices X

0
#h/2 and X

0
!h/2, that is, at deviations that are half as large as those in

the remainder of the tree. Four branches attach each of these new t"0 nodes to nodes in the coarse
lattice with price steps of h.

exactly the same number of new nodes as the extended tree of Fig. 7 because it
connects to the original lattice in exactly the same way at the end of the "rst time
step. We use quadrinomial branching to attach the new nodes to the extended
tree because trinomial branching from a node like X

0
#h/2, which is not at

a price for which there are nodes in the coarse tree, can produce negative
probabilities.

Quadrinomial branching introduces a fourth probability to be determined.
Consider the new node at X

0
#h/2. The four probabilities attached to the four

possible next period nodes are p
66

, p
6
, p

$
, and p

$$
, corresponding to price

changes of #3
2
h, #h/2, !h/2, and !3

2
h, respectively. Eq. (5) speci"es four

conditions for a trinomial system to satisfy, which "xes the three probabilities
and the relationship between the price and time steps h and k. Here, the price
and time steps in the new "ne mesh are already determined by their values in the
coarse mesh, so adding a fourth branch does not gain a degree of freedom.

The four probabilities must obey the following conditions: the expected return
over the next time step is the riskless rate, the second moment is consistent with
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the volatility p of the underlying asset, the skewness is zero like that of the
normal distribution, and the probabilities sum to 1.0. With a"r!q!p2/2
and q denoting the dividend yield,

3
2
hp

66
#1

2
hp

6
!1

2
hp

$
!3

2
hp

$$
"0,

(3
2
h)2p

66
#(1

2
h)2p

6
#(1

2
h)2p

$
#(3

2
h)2p

$$
"p2k,

(3
2
h)3p

66
#(1

2
h)3p

6
!(1

2
h)3p

$
!(3

2
h)3p

$$
"0,

p
66
#p

6
#p

$
#p

$$
"1. (21)

Solving these four equations in four unknowns, making use of the fact that
h2"3p2k, and simplifying yields

p
66
"p

$$
"1/48,

p
6
"p

$
"23/48. (22)

5.4. Adding xner AMM levels to the lattice

Like the other AMM lattice structures, this model is isomorphic, so "ner
layers of mesh can be added using the same procedure at each level. Fig. 9
illustrates how the second level AMM is constructed. The "rst level of the
AMM, shown in Fig. 8, begins with the extended-tree lattice, using a price step
of h and a time step of k, and adds time 0 nodes one half of a price step above and
below X

0
. The time 0 nodes are connected to the coarse lattice at time 1, using

trinomial branching from X
0
, since it is a node in the coarse lattice, and

quadrinomial branching from the two new nodes that fall in between two coarse
nodes. The "nal tree has three nodes at time 0, whose prices di!er by the amount
h/2. From these nodes there are branches connecting to the "ve time 1 nodes in
a coarse tree with price step h.

To go to the next level of AMM, we must add a new section of lattice with
a price step of h/2 and a time step of k/4 and connect it to "ve nodes in the "rst
level AMM lattice. The initial asset price X

0
is the center node at t"0. From it,

three branches lead to the nodes one ("ne mesh) time step later, with prices X
0
,

X
0
#h/2, and X

0
!h/2. As in the level 1 AMM, we now place time 0 nodes one

half of a ("ne mesh) price step above and below X
0
, at X

0
#h/4 and X

0
!h/4.

From these prices, a middle `no changea branch would not connect to the next
higher level lattice, so quadrinomial branching is required. As before, branches
from the three initial price nodes lead to "ve nodes of the next higher level mesh
in the next ("ne) time step. (This means that the coarse tree nodes at X

0
#h and

X
0
!h, which did not have to be calculated for the "rst level AMM, will be

needed now.)
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Fig. 9. AMM level 2 for computing delta and gamma. The heavy lines represent the coarse lattice
with step sizes h and k. The dashed lines indicate the section of lattice that is added in the "rst level
AMM. The "ne solid lines show the level 2 AMM section, with a price step of h/2 and a time step of
k/4. New time 0 nodes are at X

0
#h/4 and X

0
!h/4, with four branches extending from each. As

before, three branches extend from X
0
.

In Fig. 9, the heavy lines represent the coarse lattice with step sizes h and k;
the dashed lines indicate the section of lattice that is added in the "rst level
AMM, and the "ne solid lines show the level 2 AMM section. Adding a third
level AMM would follow the same process, with the starting node one
"nest time step (k/16) earlier and three t"0 nodes at X

0
, X

0
#h/8, and

X
0
!h/8, that branch to "ve nodes in the next step. In all cases, if there is a

node with the same price in the next higher AMM level, trinomial branching is
used, but for nodes falling in between prices in the next level, branching is
quadrinomial.
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5.5. The general procedure for constructing an AMM lattice for delta and gamma

The foregoing description started with the coarsest mesh lattice and con-
sidered adding progressively "ner sections, but in constructing this kind of
AMM from scratch, it is actually more intuitive to think about it starting from
time 0. Suppose we decide to build a tree with N coarse steps and M AMM
levels. Note that the "rst level does not require adding any mesh with a shorter
time step, as is clear from Fig. 8. For each AMM level m'1, there will be one
time step of length k/4m~1. Thus the length of the entire tree will be
(N#1/4#2#1/4M~1) coarse time steps. Given option maturity ¹ and
volatility p, the values for h and k are given by

k"
¹

N!1#+M
m/1

1/4m~1
,

h"pJ3k. (23)

Denote the price and time steps for the mth level of the AMM as h
m

and
k
m

(h
m
"h/2m~1, k

m
"k/4m~1). The "rst node is placed at X

0
at time 0 and the

nodes to be used in the calculation of delta and gamma are placed at X
0
#h

m
/2

and X
0
!h

m
/2. These three nodes must branch one k

m
time step later to "ve

nodes in the next higher level AMM lattice, located at X
0
#2h

m
, X

0
#h

m
, X

0
,

X
0
!h

m
, and X

0
!2h

m
. The branching from X

0
is trinomial, because there is

a node in the higher level lattice at X
0
. Branching from a node lying between two

higher level lattice prices is quadrinomial. Once the nodes and branching for the
"rst k

m
time step are completed, the price step is doubled and the time step

multiplied by four, and the process of constructing the nodes and branching to
the next higher level is repeated until the coarsest tree with price and time steps
h and k is reached. This coarse lattice is then extended out to option maturity.

5.6. Performance of the AMM in estimating delta and gamma

Table 5 reports performance statistics for the standard trinomial and for
several versions of AMM models. We examined adding "ne mesh at time 0 to
improve the estimates of delta and gamma. However, these numerical deriva-
tives are a!ected by the nonlinearity error in the option prices, so that accuracy
can be enhanced considerably by using an AMM at expiration (t"¹) as well.
For each N, the "rst line of results is for the standard trinomial, with the Greek
letters computed by extending the tree. The next two lines incorporate one and
two levels of AMM at time 0, as in Figs. 8 and 9. The last three lines add AMM
levels both at the beginning and at expiration.

In principle, adding "ner lattice only at the beginning should not a!ect the
calculation of the option value, but there is a small e!ect going from AMM 1 to
AMM 2. This is due to the slight change in the time step, e.g., changing from 25
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Table 5
Performance of trinomial AMM models in estimating delta and gamma for European puts

The table compares the performance of trinomial AMM models with di!erent levels of "ne mesh
added at t"0 around the initial asset price, and at t"¹ around the strike price. The "rst line in
each panel gives the results for the standard Trinomial model. Delta and gamma are estimated as
numerical derivatives using the option values obtained from the "nest level of mesh at t"0. Root
mean squared errors relative to the exact Black}Scholes values and computation times on a Dell
Pentium Pro 200 MHz computer are displayed for a test set of 27 European put options. The models
are based on an initial stock price of 40, a riskless interest rate of 5.0% (4.88% continuously
compounded), and no dividends. The option test set includes European puts with all 27 combina-
tions of: strike prices of 35, 40, and 45; maturities of 1, 4, and 7 months; and volatilities of 0.20, 0.30,
and 0.40. The execution time is the average from 10 identical runs for each set of parameters.

AMM level Approximation
RMSE

Execution
time (s)

t"0 t"¹ Price Delta Gamma

N"25
Trinomial 0 0 0.012025 0.003337 0.000428 0.0090

AMM 1 0 0.012025 0.001087 0.000333 0.0090
2 0 0.011909 0.000810 0.000400 0.0090
1 1 0.002812 0.000845 0.000080 0.0120
2 2 0.000596 0.000205 0.000113 0.0131
3 3 0.000193 0.000053 0.000120 0.0140

N"100
Trinomial 0 0 0.002770 0.000846 0.000144 0.0931

AMM 1 0 0.002770 0.000265 0.000068 0.0922
2 0 0.002764 0.000188 0.000077 0.0931
1 1 0.000600 0.000210 0.000020 0.0942
2 2 0.000153 0.000056 0.000028 0.0971
3 3 0.000043 0.000014 0.000027 0.0991

N"250
Trinomial 0 0 0.001360 0.000346 0.000061 0.5358

AMM 1 0 0.001360 0.000115 0.000029 0.5288
2 0 0.001350 0.000085 0.000031 0.5287
1 1 0.000245 0.000079 0.000006 0.5308
2 2 0.000057 0.000023 0.000010 0.5878
3 3 0.000019 0.000005 0.000011 0.5738

N"1000
Trinomial 0 0 0.000244 0.000079 0.000015 8.5072

AMM 1 0 0.000244 0.000021 0.000006 8.3711
2 0 0.000243 0.000016 0.000007 8.3640
1 1 0.000056 0.000023 0.000002 8.3170
2 2 0.000016 0.000005 0.000003 8.3130
3 3 0.000006 0.000001 0.000003 8.3751
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to 251
4

coarse steps in the tree. The big di!erence is in the accuracy of delta and
gamma, for which RMSE is cut by about 2/3 for delta and 1/2 for gamma in the
AMM 1 model, with no increase in execution time. Going from AMM 1 to
AMM 2 improves the delta calculation a little, but not gamma.

When we add "ner mesh both at the beginning and the end, there is a sharp
improvement in both the option value and the delta. Gamma also becomes
much more accurate when the "rst level of AMM mesh is added at expiration,
but further re"nement does not seem to help. If anything, using a single level of
"ne mesh is better than using more.14 It is important to notice that while adding
"ner mesh leads to a large improvement in accuracy, execution time is virtually
the same for the most re"ned AMM model as for the basic Trinomial. Finally, in
comparing the AMM approach to the other methods displayed in Table 5, it is
apparent that huge gains in performance are possible. For example, a 25 time
step AMM model with three levels of "ne mesh at the beginning and end
achieves substantially greater accuracy in pricing the options and computing
their deltas than does a 1000 time step standard Trinomial that takes more than
500 times longer to execute. Only in estimating gamma does the AMM seem to
have any di$culty: it improves accuracy by only about a factor of 5 in the same
amount of time as a standard model.

6. Conclusion

The signi"cant advance in the technology of option valuation achieved by the
Black}Scholes pricing model quickly reached an impasse with American op-
tions and other derivative instruments with more varied contingencies. Al-
though the principles of valuation based on the no-arbitrage condition continue
to hold, closed-form equations can not be derived. Lattice-based models, start-
ing with the Binomial and followed by the Trinomial, o!er an intuitive frame-
work for obtaining approximate solutions.

Numerous enhancements to tree-based models have led to some improve-
ments in performance over the years, but whole classes of problems, including
many that are important for pricing common real-world derivative instruments,
remain theoretically soluble but practically infeasible with the standard methods
because they require too many calculations to achieve an acceptable degree of
accuracy.

14This is a result that we have so far been unable to explain satisfactorily. Holding the number of
AMM levels at expiration constant, we "nd that the "rst layer of adaptive mesh improves the
accuracy of the gamma calculation much more than expected (e.g., in a 100 step tree with 10 AMM
layers at expiration, adding one AMM layer at the beginning cuts RMSE for gamma from 0.000143
to 0.000005). With the second layer, performance degrades, but then it improves gradually as further
layers are added.
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The adaptive mesh approach described in this paper o!ers a way to increase
accuracy and reduce computation time enormously for many sorts of valuation
problems. We have described three types of AMM, one that involves construct-
ing a small section of high resolution mesh around the strike price at expiration,
a second that creates one or more layers of "ne mesh near the barrier of a barrier
option, and "nally one that adds "ne mesh at time 0 to enhance estimation of
delta and gamma. All three AMM models produce major improvements in
accuracy and computation speed.

The AMM approach can also be adapted relatively easily to higher dimen-
sions, with even greater performance increases relative to constant mesh size
lattice methods. For example, we obtain some results using an AMM procedure
to value an `outside barrier optiona. This is a barrier option for which the payo!
is determined by one asset price while the barrier depends on a di!erent one. An
option on the British FT-SE stock index that is knocked out if the exchange rate
on the pound falls below a speci"ed level is one example. With American
exercise and the starting asset price near the knock-out barrier, these valuation
problems are practically insoluble with ordinary lattice methods (or any other
technique currently in use). The AMM technology therefore greatly extends the
range of derivative valuation problems that may be addressed.15

Along with developing AMM models for use with derivatives that are contin-
gent upon multiple stochastic factors, we are also exploring other `variations on
the themea. This includes developing models to deal with curved or discontinu-
ous barriers and exploring general criteria for determining in which regions of
an option's state space an AMM approach will be most valuable.

Appendix A

This Appendix proves that as the sizes of the time and price steps go to zero,
the option value obtained from the AMM non-standard branching setup for
barrier options, as described in Section 4, converges to the true value. True value
is de"ned as the value of a continuous-time continuous-state barrier option that
would be obtained by solving the fundamental partial di!erential equation of
contingent claims, with the appropriate boundary conditions. The same kind of
proof can easily be adapted to prove convergence for other AMM structures.

The proof is in the same spirit as a consistency proof for the explicit "nite
di!erence method of solving partial di!erential equations (see Fletcher, 1991,
p. 77). The true solution for the option value satis"es the PDE and boundary
conditions exactly, while the approximation satis"es them only up to an error.

15Gao (1996) discusses an outside barrier option example in which the RTM approach would
require over 100 days of CPU time (it is estimated), while an AMM model obtains the correct price
to 3 decimal places in under 1 s.
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The proof consists of showing that the error term goes to zero as the time step
goes to zero.

The barrier option price must satisfy the following PDE and boundary
conditions:

C
t
#1

2
p2C

xx
#aC

x
!rC"0,

C(x, ¹)"(ex!K)` ∀x, (A.1)

C(ln H, t)"0 ∀0(t)¹,

where the variables have been de"ned previously, subscripts denote partial
derivatives, and (.)` denotes the value of the expression in parentheses when it is
positive and 0 otherwise.

In a trinomial model for a barrier option, placing a layer of nodes on the
barrier causes the approximation to satisfy the above boundary conditions
exactly. A trinomial valuation equation CA(x, t) can be written as follows:

CA(x, t)"e~rk[p
6
(h, k)CA(x#h, t#k)#p

.
(h, k)CA(x, t#k)

#p
$
(h, k)CA(x!h, t#k)],

CA(x, ¹)"(ex!K)`, ∀x,

CA(ln H, t)"0, ∀0(t()¹. (A.2)

The exact solution to the barrier option problem satis"es the PDE (A.1). We
rewrite the trinomial solution (A.2) in the form of (A.1) and evaluate the
discrepancy. First, we expand the right-hand side of (A.2) in Taylor series
around the value CA(x, t). We show all terms in the expansion out to order k2,
keeping in mind that the price step h is proportional to the square root of the
time step, hJk1@2:
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The term e~rk can also be expanded as an in"nite series as:

e~rk"1!rk#1
2
r2k2#o(k2).

Multiplying through in Eq. (A.3) and gathering terms of o(k2) into the remain-
der, gives
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Subtracting CA from both sides and dividing through by k reduces the trinomial
pricing equation to the following PDE with an error term:
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!rCA#eA"0, (A.5)

where the error term is
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It is clear in Eq. (A.6) that eA goes to zero as k goes to zero. Therefore, in the limit
the trinomial approximation obeys the PDE with boundary conditions (A.1).
This proves that the basic trinomial pricing equation for a barrier option is
consistent.

We now apply the same approach to our AMM barrier option model. Since
the A level lattice (see Fig. 6) is just a standard trinomial, by the above analysis it
is consistent at all points. Now consider the points in the B level mesh. Although
there are several sets of branch probabilities for the di!erent types of B-level
nodes, the branching from any given node is always in the standard trinomial
form. The time step is proportional to kA (from the A level mesh) and the price
step is proportional to the square root of the time step. Thus Eqs. (A.3)}(A.6) are
equally valid for a B level node. We have

eAJkA,

eBJkBJkA. (A.7)

So as kA goes to zero, the error terms also go to zero at all A and B level nodes.
The nonstandard AMM branching is therefore consistent. A similar argument

can easily show that the AMM pricing equation for a "ner mesh size is similar to
that of the level B mesh and is also consistent.
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