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VALUE AT RISK WHEN DAILY CHANGES IN MARKET

VARIABLES ARE NOT NORMALLY DISTRIBUTED

John Hull and Alan White

In the last few years Value at Risk (VaR) has become a very popular risk management
tool in many different types of organizations. There are a number of reasons for this. One
is J.P. Morgan's decision in 1994 to make their RiskMetrics database freely available to all
market participants. Another is the climate created by derivatives disasters such as Procter
and Gamble, Kidder Peabody, Orange County, and Barings. A third reason is the decision
by central bank regulators to use VaR in calculating a bank's required capital.1

A VaR calculation is aimed at making a statement of the following form: “We are X%
certain that we will not lose more than V dollars in the next N days.” The variable V is the
VaR. It is a function of two parameters: N, the time horizon and X, the confidence level.
In defining a bank's required capital, regulators use N=10 and X=99. The required capital
is therefore based on the losses over a ten-day period that are expected to happen 1% of
the time.

Models for calculating VaR are reviewed by Duffie and Pan (1997). The model most
commonly used assumes that the probability distribution of the daily changes in each
market variable is normal. However this assumption is far from perfect. The daily changes
in many variables, particularly exchange rates, exhibit significant amounts of positive
kurtosis. This means that the probability distributions of daily changes in these variables
have “fat tails” so that extreme outcomes happen much more frequently than would be
predicted by the normal distribution assumption. Duffie and Pan (1997) identify jumps and
stochastic volatility as possible causes of kurtosis. They point out that under a jump-
diffusion model, kurtosis is a declining function of the time horizon whereas, under a
stochastic volatility model, it is an increasing function of the time horizon (at least for the
time horizons normally considered in VaR calculations).

In this article we show how the normal distribution assumption can be relaxed. We
develop a model where the user is free to choose any probability distribution for the daily
changes in each market variable and the parameters of the distribution are subject to
updating schemes such as GARCH. A key aspect of the model is the way in which
correlations are handled. We transform the daily changes in each market variable into a
new variable that is normally distributed. We assume that the new variables are
multivariate normal. We illustrate the approach using nine years of daily data on twelve
different exchange rates.

Section I describes the usual VaR assumptions and reviews the main approaches to
calculating VaR. Section II presents data on the kurtosis of major exchange rates. Section
III describes the model. Section IV applies the model to exchange rate data. Section V

                                               
1 See Jackson et al (1997) for a discussion of this.
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explains how the model can be used in conjunction with the RiskMetrics or similar
database. Conclusions are in Section VI.

I. Approaches to Calculating Value at Risk

There are a number of alternative ways to calculate VaR for a portfolio. A popular
approach that uses the RiskMetrics or similar database is to assume a model where the
changes in the values of the market variables (equity prices, zero-coupon bond prices,
exchange rates, commodity prices, etc.) have a multivariate normal distribution. The mean
change in the value of each variable is assumed to be zero.

If the instruments in the portfolio are linearly dependent on n market variables, VaR can
be calculated analytically when this model is used. The dollar change in the portfolio value
in one day, ∆P, has the form:
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where ∆xi is the proportional change in the value of the ith market variable during the day
and the ai are constants (1 ≤ i ≤ n). The probability distribution of the portfolio value at
the end of one day is normal with mean zero and standard deviation σP  where
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The variable σi is the daily volatility of the ith market variable and ρij is the correlation
between ∆xi  and ∆xj. The VaR for any given confidence level and any time horizon can
easily be calculated from σP .  For example, the VaR with a confidence level of 99% and a

horizon of N days is 2 33. .σP N

When the portfolio includes instruments that are not linearly dependent on the market
variables, there are no exact approaches to calculating VaR. One possibility is to use
Monte Carlo simulation. Unfortunately this can be quite time consuming since the
complete portfolio must be revalued on each simulation trial. An alternative is to
approximate the relationship between ∆P and the ∆xi’s using the first two terms in a
Taylor series expansion so that
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This expression can be used to calculate the moments of ∆P analytically.2 Alternatively a
Monte Carlo simulation can be used with ∆P being calculated directly from equation (1).

                                               
2 The Cornish-Fisher expansion provides an approximate way of converting the moments of ∆P to the
appropriate fractile of the distribution of ∆P. For a description see Johnson and Kotz (1972).
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The latter is referred to as the partial simulation approach. It is much less time consuming
that a full simulation since it avoids the need for the portfolio to be revalued on each
simulation trial.

Recently Jamshidian and Zhu (1997) have suggested an interesting alternative way of
speeding up Monte Carlo simulation. This is known as scenario simulation. It involves
defining an M-point discrete approximation to the probability distribution of each market
variable. On each simulation trial, samples for the changes in each market variable are
taken from the full multivariate distribution of the market variables in the usual way. Each
sample is then replaced by the closest value in the corresponding discrete distribution
before valuing the portfolio. The advantage of the approach is that it significantly reduces
the number of times individual instruments in a portfolio (particularly those dependent on
only one market variable) have to be valued.

Some analysts prefer to use historical data rather than a model to define the statistical
behavior of market variables. This involves creating a database consisting of the daily
movements in all market variables over a period of time. The first simulation trial assumes
that the percentage changes in each market variable are the same as those on the first day
covered by the database; the second simulation trial assumes that they are the same as
those on the second day; and so on. The change in the portfolio value is calculated for
each simulation trial and the VaR is calculated as the appropriate fractile of the probability
distribution of these portfolio changes. The change in the portfolio value can be obtained
either by revaluing the portfolio or by using equation (1).

The historical data approach has the advantage that it accurately reflects the historical
multivariate probability distribution of the market variables. Its disadvantage is that the
number of simulation trials is limited to the number of days of data that are available. Also,
sensitivity analyses are difficult and variables for which there are no market data cannot
easily be included in the analysis. The purpose of this paper is to extend the model-
building approach so that the historical behavior of market variables is represented more
accurately.

II. Non-Normality in Market Variables

Although the RiskMetrics VaR calculation approach assumes multivariate normality, the
changes in many market variables, particularly exchange rates, exhibit positive kurtosis.
This means that extreme movements in the variables are more likely than a normal
distribution would predict. Exhibit 1 compares a normal distribution with a distribution
exhibiting positive kurtosis.3 Both distributions have the same mean and variance.
However, the positive-kurtosis distribution is more peaked and has fatter tails. It is
interesting to note what happens when we move from a normal distribution to a
distribution with positive kurtosis. Probability mass is added to the central part of the

                                               
3 The positive kurtosis distribution in Figure 1 was constructed as an equally weighted mixture of two
normal distributions.
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distribution and added to the tails of the distribution. At the same time probability mass is
taken from regions of the probability distribution that are intermediate between the tails
and the center. The effect of kurtosis is therefore to increase the probability of very large
moves and very small moves in the value of the variable while decreasing the probability of
moderate moves.

To illustrate the problem of non-normality in market variables we will examine the
behavior of exchange rates. The data we will use in this paper consists of daily exchange
rates for 12 major currencies between January 4, 1988 and August 15, 1997. The total
number of trading days covered by the data is 2,425. The currencies are the Australian
dollar (AUD), Belgian franc (BEF), Swiss franc (CHF), German deutschemark (DEM),
Danish krone (DKK), Spanish peseta (ESP), French franc (FRF), British pound (GBP),
Italian lire (ITL), Japanese yen (JPY), Dutch guilder (NGL), and Swedish krone (SEK).

Define ei as the proportional change in an exchange rate between day i and day i+1. The
table in Exhibit 2 shows the frequency with which ei exceeded 1, 2, 3, 4, 5, and 6 standard
deviations for each of the currencies. (For the purposes of calculating this table, ei was
assumed to have zero mean and constant variance.) The table illustrates that all currencies
exhibit significant excess kurtosis. The hypothesis that the ei are normal can be rejected
with a very high degree of confidence. The probability of a one standard deviation move is
25.04% on average. This is considerably less than the 31.73% predicted by the normal
distribution and indicates that exchange rates have a more peaked distribution than the
normal distribution. The probability of a three standard deviation move is 1.34% on
average. This compares with 0.27% for the normal distribution and is consistent with
exchange rates having fatter tails than the normal distribution. Exhibit 2 also shows the
usual excess kurtosis measure for each currency.4 For a normal distribution this measure is
zero.

The RiskMetrics database uses an exponentially weighted moving average (EWMA) for
the daily variance so that

σ λσ λi i ie2
1

2
1

21= + −− −( ) (2)

where σi
2 is the variance calculated on day i and λ is set equal to 0.94.5 Exhibit 3 shows

the frequency with which ei exceeded 1, 2, 3, 4, 5, and 6 standard deviations when the
standard deviation is calculated using equation (2). The table shows that the stochastic
volatility model in equation (2) does lead to a significant reduction in the excess kurtosis
measure. However, the discrepancies between the observed frequencies and those that
would be expected if the ei were normal are still large. The hypothesis that the ei are
normal can still be rejected with a very high degree of confidence.

                                               
4 The excess kurtosis of a distribution is defined as

m
v

4
2 3−

where m4 is its fourth central moment and v is its variance.
5 This is a particular case of a GARCH (1,1) process.
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III. Modeling Non-Normality and the Calculation of VaR

The traditional approach to modeling non-normality in observed outcomes in a time series
has been to assume that, although the unconditional returns are not normal, suitably
conditioned returns are normal. There have been three popular models of this type:
GARCH models, mixed jump-diffusion models, and Markov switching models. In the
GARCH or stochastic volatility models, the returns are normal conditional on knowing the
current variance. In the mixed jump-diffusion models the returns are normal conditional on
there being no jump. In the Markov switching models the returns are normal conditional
on knowing the current state. The models have the advantage that they allow one to take
advantage of the simple properties of multivariate normal distributions.

In this paper we are proposing a fourth alternative for handling non-normality. Our
proposal is that some functional transformation of the observed returns is normal. This is
similar to the other three models in that, suitably conditioned, the data is assumed to be
normal. The proposal is not entirely new. For example, it has traditionally been assumed
that changes in asset prices are drawn from a lognormal distribution so that changes in the
logarithm of the asset price are normally distributed.

Suppose that there are a total of m market variables. Define eij as the proportional change
in variable j on day i (1 ≤ j ≤ m) and Gij is the cumulative probability distribution assumed
for eij. In general, Gij is dependent on a number of parameters, some independent of i and
some subject to updating schemes similar to GARCH. We transform eij into a new variable
fij using the transformation

( )[ ]f N G eij ij ij= − 1 (3)

where N is the cumulative normal distribution function.6  The expression inside the square
brackets in equation (3) is the cumulative probability that the daily change in variable j on
day i is less than eij. Denote this by z so that eij is the z-th fractile of the distribution being
assumed for daily changes. The variable fij is the same fractile of the standard normal
distribution. In moving from eij to fij we are mapping observations from the assumed
distribution of daily changes into a standard normal distribution on a “fractile-to-fractile”
basis.

This approach can be used in conjunction with either the historical data approach or the
model approach to VaR calculations. The model approach to VaR calculations assumes a
particular form for the distribution of outcomes (for example, a displaced chi-square
distribution, a t distribution, or a mixture-of-normals distribution.) and estimates the
parameters of the distribution for each market variable. In this case, the G function  is
calculated from the assumed distribution. The historical data approach bases the
distribution of future changes on the distribution of past changes. In this case the G
function is the cumulative histogram of historic changes. We assume that the fij (1 ≤ j ≤ m)
have a multivariate normal distribution.  VaR can be calculated using either Monte Carlo
simulation or a Taylor Series expansion.
                                               
6 A similar idea is in Hull (1977) and has been used by Duan (1997)
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When Monte Carlo simulation is used, the multivariate normally distributed variables, fij,
are mapped into actual outcomes, eij, using

e G N fij ij ij= − 1[ ( )] (4)

On each simulation trial, we sample an fij and from equation (4) find the corresponding eij.7

The eij are then used to calculate the change in the value of the portfolio in the usual way,
using either equation (1) or a full portfolio revaluation.

This model is ideally suited to be used in conjunction with the scenario simulation
approach of Jamshidian and Zhu (1997) described earlier. We first replace the assumed
continuous probability distribution for each e-variable by a discrete distribution in a way
similar to that suggested by Jamshidian and Zhu. We then carry out a preliminary analysis
to determine from equation (3) the range of values of fij that correspond to each discrete
value of eij. As the simulation proceeds, we move directly from samples of the fij that come
from a continuous multivariate normal to the corresponding samples of the eij that come
from the discrete approximations to the assumed distributions.

To use the Taylor Series expansion we assume a quadratic relationship between the
change in the portfolio value and the eij. To calculate the first few moments of the change
in the portfolio value (so that the Cornish-Fisher expansion can be used) we require terms
of the form E(eij), E(eijeik), E(eijeik

2), E(eij
2eik

2), etc. These can be calculated, tabulated and
stored in advance of VaR calculations by carrying out a single Monte Carlo simulation of
the eij’s. If this Monte Carlo simulation has to be carried out every day, the Taylor Series
expansion approach is clearly inferior to the use of Monte Carlo simulation approach in
conjunction with a quadratic approximation. However, if only one parameter in Gij  is
updated  from day to day, and this is a variance parameter that effectively “scales” the eij,
then the Monte Carlo simulation has to be carried out only once (or at least only when the
Gij functions are changed). This is the situation in the example given below and is likely to
be the case in most applications of our approach. An alternative approach is to assume
that the correlation between eij

m and eik
n  is the same as it would be if the e’s were

normally distributed and calculate the required expectations from these correlations and
the moments of the assumed probability distributions of the e’s.

IV. A Particular Example of the Model

In this section we illustrate how the G functions can be chosen.8 The model parameters are
estimated from the foreign exchange data described earlier and the quality of
approximation is then tested by comparing the model fit for a hold-out sample of data. We
use a mixtures-of-normals distribution to represent the G functions.9 We consider two

                                               
7 This may involve an iterative search.
8 Our objective is to show that it is not difficult to find a reasonable representation of the actual
distribution of returns for foreign exchange data. We are not attempting to find the “true” form of G.
9 Other researchers who have used mixtures of normals in VaR calculations are Zangari (1996) and
Venkataraman (1997). Zangari assumes probability distributions for each of the parameters describing the
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models. In the first model the distribution of daily changes is stationary. In the second
model, the variance of the distribution of daily changes can change, but  parameters
describing the kurtosis of the distribution are constant. The parameter estimation is done
by fitting the fractiles of the distribution. We emphasize that the functional form for the G
functions and the estimation procedure are illustrations of the general approach that can be
followed. Many other different assumptions and estimation procedures can be used.
However, it is encouraging that the results we will present for the second model are quite
good.

Define σi
2 as the variance of the proportional daily change ei in a variable on day i. We

assume that the probability density of daily changes is10
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The probability density function is a weighted average of two zero-mean normal
distributions. The first distribution has weight p and standard deviation uσi. The second
distribution has weight 1-p and standard deviation vσi. Note that we are not assuming a
Markov switching model where on any given day either one normal distribution or the
other applies. Equation (5) defines a family of distributions in terms of four parameters: p,
u, v, and σi.

The variance of the distribution in (5) is

pu p vi i
2 2 2 21σ σ+ −( )

Since this must equal σi
2, the parameters underlying the distribution must satisfy

pu p v2 21 1+ − =( ) (6)

In fitting the model to the data we consider two cases. In the first case, the variance of
daily changes in a market variable is assumed to be constant and equal to σ 2 so that σi =
σ. (This is the assumption in Exhibit 2.) In the second case the variance is assumed to be
given by the EWMA model in equation (2) with λ=0.94. Other GARCH updating schemes
for σi  could  also be considered.

To test the models we chose values of p, u, and v that are consistent with equation (6) and
provide a best fit to the distribution of ei over the period covered by the first half of the

                                                                                                                                           
mixture of normals and uses a Bayesian updating scheme. Venkataraman uses a quasi-Bayesian maximum
likelihood estimation procedure. Our model is non-Bayesian and conceptually simpler than that of either
Zangari or Venkataraman. Also it has a quite different approach to handling correlations.
10 For ease of notation we omit the j subscript in this part of the paper.
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data (January 4, 1988 to October 19, 1992). A natural approach here would appear to be
to maximize the log-likelihood function:

log exp exp
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One problem with this, pointed out by Hamilton (1991), is that attempts to maximize the
function can lead to instability, local solutions, and non-convergence problems.11 Another
problem is that the best fit values of p, u, and v are greatly influenced by extreme data
items.12

To overcome these problems, we decided to estimate the parameters by fitting the fractiles
of the distribution. The data on exchange rate changes was divided into four categories:
less than one standard deviation (|ei| ≤ σi); one to two standard deviations (σi < |ei| ≤ 2σi);
two to three standard deviations (2σi< |ei| ≤ 3σi); and, greater than three standard
deviations (3σi < |ei|). We compared the number of data items observed in each category
with the number that would be predicted for particular values of p, u, and v and selected
the values of these parameters that maximize the log-likelihood function13

α βk k
k

log( )
=
∑

1

4

where α k is the actual proportion of observations in the kth category and β k is the
predicted proportion. This procedure was carried out for each of the 12 currencies as well
as for the pooled results from all exchange rates. Parameter estimates were made for the
constant variance case and the EWMA case. The best fit parameters for the EWMA case
values are shown in Exhibit 4.

The best-fit estimates of p, u, and v were then assumed to apply to the second half of the
data sample and a chi-square statistic was calculated to determine the goodness of fit. For
the purposes of calculating the chi-square statistic the data was categorized as described

                                               
11 Consider for example the situation where one of the ei is zero. As u tends to zero the two exponential
functions are both 1, while p/(uσi) tends to infinity so that the log-likelihood function also tends to
infinity.
12 It might seem strange that we are concerned about the adverse effect of extreme data items on our
parameter estimates when the purpose of the model is to capture the probability of extreme outcomes more
accurately. Our argument is as follows. When calculating VaR, we are not interested in modeling the
really extreme (e.g. 0.1% tails) of the distribution of a market variable accurately at the expense of a
decrease in the accuracy with which the 1% and 5% tails are modeled. This is because the 0.1% tail is not
known accurately from historical data and does not influence a VaR calculation for the confidence levels
usually chosen.
13 The probability that, out of a total of N observations, ni  are in category i (1≤i≤4) is proportional to

β β β β1 2 3 4
2 3 4n n n ni

Taking the logarithm of this function and dividing by N we obtain the log-likelihood function.
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above.14 We carried out a separate analysis for each of the 12 currencies. For the
parameters estimated from the pooled results from all exchange rates, the chi-square
statistic was calculated by applying the pooled parameter estimates to each currency
separately. These results for the EWMA case also appear in Exhibit 4. The results for the
constant variance case are poor due to substantial changes in the volatilities of many of the
currencies between the first period and the second period.15

In testing the validity of the model and the estimated parameters for a single currency, the
model can be rejected with 95% confidence when the chi-square statistic is greater than
7.8. In the case in which we attempt to fit the distributions of all currencies
simultaneously, the model can be rejected with 95% confidence when the chi-square
statistic is greater than 51. Exhibit 4 shows that for the exponentially weighted moving
average model the single currency model can be rejected for only four of the currencies.
When the same p, u, and v is used for all currencies, the value of the chi-square statistic is
48.24 indicating that the model cannot be rejected with 95% confidence. The sum of the
chi-squares for the individual currency models is 72.73, indicating that we can reject at the
95% confidence level the hypothesis that the EWMA model is correct with a different  p,
u, and v for each currency.

Our analysis therefore provides support for using the EWMA model with same p, u, and v
parameters for all currencies. The fit to the first half of the data is of course slightly worse
when the p, u, and v parameters are constrained to be the same for all currencies.16

However, the fit to the second half of the data is much better. This is because the best fit
parameter values for an individual currency are not particularly stable whereas the best fit
parameters for the all-currency model are quite stable. For the exponentially weighted
moving average model the latter change from p = 0.62, u = 0.70, and v = 1.36 for the first
half of the data to p = 0.66, u = 0.73, and v = 1.38 for the second half.

Exhibit 5 compares the actual distributions of ei for the second half of the data assuming
the EWMA model with the distributions predicted by the normal distribution and by a
model based on a single set of p, u and v parameters. The table illustrates that the mixture

                                               
14 The chi-square statistic is
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where Ai  is the actual number of observations in category i in the second half of the data and Ei  is the
expected number of observations based on the distribution estimated from the first half of the data.
15 It is interesting to note that, if we base the calculation of the chi-square statistic on the volatility
estimate of each currency during the second period instead of the first, the model works very well. Among
the 12 currencies the constant variance version of the model can be rejected only for the Swedish krone.
When a single model is used for all currencies the chi-square statistic is 29.55, well under the 95%
confidence level of 51. This suggests that, although the variance of a currency’s return is non-stationary,
the p, u, and v parameters describing the kurtosis are fairly stationary.
16 The maximum value of the total log-likelihood function (all currencies) decreases from -9.46 to -9.47
when we constrain the parameters to be the same for all currencies in the case of the exponentially
weighted moving average model.
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of normals is a big improvement over the pure normal as a representation of daily
exchange rate changes.

V. Using the RiskMetrics or Similar Database

Exhibit 6 shows estimates for the correlations between the e’s and the correlations
between the f ’s for the second half of the data in our example when the EWMA model is
used to update variance estimates. The correlations are very similar.17 This suggests that,
rather than estimating the correlation between the f ’s directly, we can reasonably assume
that the correlation matrix for the f ’s is the same as that for the e’s.

With this small approximation all calculations can be carried out using the Riskmetrics or a
similar database once the G functions have been determined. In general  Gij  depends on
the estimate of the standard deviation of eij made on day i. Our example used an EWMA
model with λ = 0.94 for this but other models can be used.  The covariance matrix for the
f `s is known since, by construction the variance of each  f is 1.0 and  by assumption the
correlations between the f `s are the same as those between the e`s.

VI. Conclusions

In this article we have shown how the usual multivariate-normal assumption in the
calculation of VaR can be replaced by a “transform-to-multivariate-normal” assumption.
The new model has the advantage that it enables the third, fourth and higher moments of
the returns on market variables to be reflected in VaR calculations. We have illustrated the
model using nine years of daily exchange-rate data for 12 currencies and find that it is
capable of accurately reflecting the probabilities of 1, 2, and 3 standard deviation moves in
the exchange rates. The model can be applied to calculating VaR relatively easily using the
the RiskMetrics or a similar database. Either a Monte Carlo simulation or a Taylor Series
expansion approach can be used.

                                               
17 Note that the instantaneous correlations between the e’s are identical to those between the f `s.



12

References

Duan , J-C, “Conditionally fat-tailed distributions and the volatility smile in options,”
Working Paper, Hong Kong University of Science and Technology, 1997.

Duffie, D. and J. Pan, “An overview of value at risk” Journal of Derivatives, Vol. 4, No.
3 (Spring 1997), pp. 7-49.

Hamilton, J. “A quasi-Bayesian approach to estimating parameters for mixtures of normal
distributions” Journal of Business and Economic Statistics, Vol. 9, No. 1, 1991, pp. 27-
39.

Hull, J. C. “Dealing with dependence in risk simulations” Operational Research
Quarterly, Vol 28, No. 1 ii, pp 201-203.

Jackson, P., D. J. Maude, and W. Perraudin “Bank capital and value at risk” Journal of
Derivatives, Vol. 4 No. 3 (Spring 1997), pp 73-90.

Jamshidian, F. and Y. Zhu, “Scenario simulation model: theory and methodology”
Finance and Stochastics, Vol. 1, 1997, pp. 43-67.

Johnson, S. L. and S. Kotz Distributions in statistics: Continuous univariate distributions
1. New York: John Wiley and Sons, 1972.

Venkataraman, S. “Value at risk for a mixture of normal distributions: the use of quasi-
Bayesian estimation techniques” Economic Perspectives, Federal Reserve Bank of
Chicago, March/April 1997, pp. 2-13

Zangari, P. “An improved methodology for measuring VaR” RiskMetrics Monitor,
Reuters/JP Morgan, 1996.



13

EXHIBIT 1

Comparison of Normal Distribution and Positive-Kurtosis Distribution. The
Distributions have the Same Mean and Variance
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EXHIBIT 2

Exchange Rate Moves when Constant Variance Model is Used

AUD BEF CHF DEM DKK ESP

>1 stdev 23.80% 24.96% 26.24% 25.74% 25.58% 23.72%

>2 stdev 5.49% 4.95% 5.45% 5.65% 5.40% 4.70%

>3 stdev 1.36% 1.32% 1.24% 1.24% 1.32% 1.53%

>4 stdev 0.41% 0.25% 0.17% 0.25% 0.12% 0.37%

>5 stdev 0.21% 0.04% 0.04% 0.00% 0.00% 0.17%

>6 stdev 0.08% 0.04% 0.00% 0.00% 0.00% 0.08%

Kurtosis 4.40 3.31 1.69 1.91 1.61 7.75

FRF GBP ITL JPY NLG SEK

>1 stdev 26.03% 25.33% 25.08% 23.60% 25.54% 24.83%

>2 stdev 5.53% 5.45% 4.83% 5.40% 5.24% 5.20%

>3 stdev 1.44% 1.44% 1.28% 1.49% 1.20% 1.24%

>4 stdev 0.12% 0.37% 0.29% 0.62% 0.25% 0.25%

>5 stdev 0.00% 0.04% 0.17% 0.12% 0.04% 0.12%

>6 stdev 0.00% 0.00% 0.08% 0.00% 0.00% 0.04%

Kurtosis 1.65 2.57 5.93 3.34 2.07 4.44

Average Normal

>1 stdev 25.04% 31.73%

>2 stdev 5.27% 4.55%

>3 stdev 1.34% 0.27%

>4 stdev 0.29% 0.01%

>5 stdev 0.08% 0.00%

>6 stdev 0.03% 0.00%

Kurtosis 3.39 0.00
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EXHIBIT 3

Exchange Rate Moves When

Exponential Weighted Moving Average Model is Used

AUD BEF CHF DEM DKK ESP

>1 stdev 26.98% 28.42% 28.80% 28.55% 29.17% 29.00%

>2 stdev 5.73% 6.52% 6.31% 6.68% 6.35% 6.15%

>3 stdev 1.53% 1.40% 1.03% 1.44% 1.28% 1.32%

>4 stdev 0.66% 0.33% 0.17% 0.08% 0.21% 0.29%

>5 stdev 0.21% 0.08% 0.08% 0.04% 0.04% 0.12%

>6 stdev 0.08% 0.08% 0.04% 0.04% 0.04% 0.08%

Kurtosis 3.59 3.23 2.09 2.03 1.97 2.77

FRF GBP ITL JPY NLG SEK

>1 stdev 29.50% 27.81% 28.96% 26.49% 29.37% 29.29%

>2 stdev 6.52% 6.68% 6.11% 6.52% 6.15% 6.35%

>3 stdev 1.53% 1.44% 1.69% 1.24% 1.11% 1.24%

>4 stdev 0.17% 0.25% 0.33% 0.50% 0.29% 0.08%

>5 stdev 0.04% 0.08% 0.08% 0.17% 0.08% 0.04%

>6 stdev 0.04% 0.04% 0.04% 0.12% 0.04% 0.04%

Kurtosis 2.12 2.35 2.15 3.47 2.15 1.47

Average Normal

>1 stdev 28.53% 31.73%

>2 stdev 6.34% 4.55%

>3 stdev 1.36% 0.27%

>4 stdev 0.28% 0.01%

>5 stdev 0.09% 0.00%

>6 stdev 0.06% 0.00%

Kurtosis 2.45 0.00
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EXHIBIT 4

Best fit Values of p, u, and v when the Exponentially Weighted Moving Average
Mixture of Normals Model is Fitted to First Half of Data. The Chi-Square Statistic

Measures the Goodness of Fit to the Second Half of the Data

AUD BEF CHF DEM DKK ESP

p 0.85 0.57 0.51 0.57 0.30 0.62

u 0.78 0.69 0.69 0.66 0.14 0.68

1-p 0.15 0.43 0.49 0.43 0.70 0.38

v 1.77 1.30 1.24 1.32 1.19 1.37

Chi-Square 5.81 6.14 1.90 1.86 9.24 9.92

FRF GBP ITL JPY NLG SEK ALL

p 0.49 0.35 0.68 0.75 0.79 0.48 0.62

u 0.61 0.14 0.73 0.70 0.81 0.61 0.70

1-p 0.51 0.65 0.32 0.25 0.21 0.52 0.38

v 1.27 1.24 1.41 1.58 1.52 1.26 1.36

Chi-Square 8.77 9.34 4.27 5.34 5.64 4.50 48.24
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EXHIBIT 5

Probability Distributions For Second Half of Data Compared With Probability
Distribution for the Mixture of Normals EWMA Model that Provides Best Overall

Fit to First Half of Data

AUD BEF CHF DEM DKK ESP

0 to 1 SD 72.44% 72.19% 72.28% 72.11% 70.96% 70.30%

1 to 2 SD 21.37% 21.29% 21.53% 21.78% 23.10% 24.26%

2 to 3 SD 4.70% 4.95% 5.20% 4.79% 4.54% 4.46%

>3 SD 1.49% 1.57% 0.99% 1.32% 1.40% 0.99%

FRF GBP ITL JPY NLG SEK

0 to 1 SD 69.97% 72.77% 70.71% 73.18% 71.45% 70.79%

1 to 2 SD 24.09% 21.04% 23.51% 20.05% 22.36% 23.68%

2 to 3 SD 4.70% 4.54% 4.37% 5.28% 5.28% 4.62%

>3 SD 1.24% 1.65% 1.40% 1.49% 0.91% 0.91%

Best Fit Normal

Model Model

0 to 1 SD 73.11% 68.27%

1 to 2 SD 21.31% 27.18%

2 to 3 SD 4.55% 4.28%

>3 SD 1.03% 0.27%



18

EXHIBIT 6

Correlations between Exchange Rate Movements and between Transformed
Exchange Rate Movements (Second Half of Data EWMA Model)

Exchange Rate Movements

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK
AUD 1.000
BEF -0.046 1.000
CHF -0.054 0.862 1.000
DEM -0.057 0.926 0.916 1.000
DKK -0.057 0.886 0.839 0.900 1.000
ESP -0.049 0.821 0.762 0.831 0.816 1.000
FRF -0.055 0.924 0.887 0.945 0.902 0.846 1.000
GBP 0.087 0.566 0.576 0.605 0.586 0.526 0.599 1.000
ITL 0.049 0.601 0.594 0.627 0.621 0.651 0.668 0.466 1.000
JPY -0.116 0.513 0.531 0.536 0.495 0.448 0.520 0.294 0.333 1.000
NLG -0.059 0.934 0.914 0.984 0.901 0.836 0.946 0.595 0.628 0.534 1.000
SEK -0.006 0.573 0.571 0.600 0.598 0.578 0.625 0.449 0.588 0.324 0.594 1.000

Transformed Exchange Rate Movements

AUD BEF CHF DEM DKK ESP FRF GBP ITL JPY NLG SEK
AUD 1.000
BEF -0.053 1.000
CHF -0.061 0.866 1.000
DEM -0.068 0.932 0.915 1.000
DKK -0.071 0.897 0.844 0.908 1.000
ESP -0.055 0.823 0.765 0.833 0.820 1.000
FRF -0.065 0.925 0.884 0.943 0.907 0.847 1.000
GBP 0.084 0.580 0.587 0.614 0.595 0.533 0.608 1.000
ITL 0.037 0.606 0.600 0.627 0.629 0.657 0.672 0.478 1.000
JPY -0.123 0.513 0.528 0.532 0.498 0.451 0.516 0.299 0.339 1.000
NLG -0.071 0.938 0.913 0.983 0.908 0.838 0.944 0.605 0.628 0.530 1.000
SEK -0.017 0.581 0.575 0.601 0.607 0.582 0.630 0.450 0.596 0.327 0.596 1.000


