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Bond Pricing and the Term Structure of interest Rates:
A Discrete Time Approximation

David Heath, Robert darrow, and Andrew Morton*

Abstract

This paper studies the binomial approximation to the continuous trading term structure
model of Heath, Tarrow, and Morton (1987). The discrete time approximation makes the
ariginal methodalogy accessible to a wider audience, and provides a computational proce-
dure necessary far calculating the contingent claim values derived in the continuous time
paper. This paper also extends and generalizes Ho and Lee's (1986) model to include
multiple random shocks to the forward rate process and to include an analysis of continu-
ous time limits. The generalization provides insights into the limitations of the existing
empirical implementation of Ho and Lee’s model.

[. Introduction

Recently, a new methodology has emerged to price default-free bonds and
the term structure of interest rates (see Ho and Lee (1986) and Heath, Jarrow,
and Morton (1987)). This methodology, using the martingale measure approach,
provides arbitrage-free prices that do not explicitly depend on the ‘‘market price
for risk,’" but rather depend on an exogenously specified initial forward rate
curve. This subtle, but important, distinction differentiates this class of models
from those previously employed (i.e., Langetieg (1980), Brennan and Schwartz
(1979), and Cox, Ingersoll, and Ross (1985)} since it generates a *“preference-
free’' pricing paradigm.

The initial paper by Ho and Lee (1986) studied a discrete trading economy
where bond prices fluctuate stochastically through tirme according to a single bi-
nomial process. Due to its simplistic structure, this family of stochastic processes
1s most interesting when it is viewed as an approximation to a continuous trading
ecanomy. The continuous trading analogue or limit economy, however, was not
analyzed by Ho and Lee (1986). Heath, Jarrow, and Morton (1987} analyzed this
continuous trading analogue, significantly generalizing the eatlier model to in-
clude multiple random shocks to the forward rate process (in the form of indepen-
dent Brownian motions) and nonnegative interest rate processes.

* Heath and Jamrow, Johnason Graduate School of Management, Cormnell University, Ithaca, NY
14853; Morton, College of Business Administeation, University of [linois at Chicago, Chicago, [L
60680, Helpful comments from Kaushik Amin, Robin Brenner, Peter Carr, and the finance workshop
at Comell University are gratefully acknowledged.
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This paper provides a discrete time approximation to Heath, Jarrow, and
Morton (1987).and, as such, makes three contributions to the literature beyond
that contained in Heath, Jarrow, and Morton (1987). First, as a pedagogical
piece, it makes the Heath, Jarow, and Morton (1987) methodology accessible to
a wider audience. The original paper by Heath, Jarrow, and Morton is very ab-
stract and difficult to read. This paper illustrates how to obtain the continuous
time Heath, Jarrow, and Morton model as the limit of the discrete case, thereby
clarifying various concepts and proofs in the original paper.

Second, as a discrete time approximation to the continuous time maodels in
Heath, Jarrow, and Morton, it provides a computational tool useful for empirical
investigations of the continuous time model. This is especially true when com-
puting values for interest rate dependent contingent claims with early exercise
provisions, like callable Treasury bonds, Treasury futures, or options on Trea-
sury futures. For multiple factor, nonnegative forward rate processes, there are
no simple closed form solutions available for these financial securities. The ap-
proximation procedure employed below is designed to emphasize the economic
insights, and may not be the most efficient from a computational prospective.
More efficient computational procedures are needed (see Nelson and Ra-
maswamy (1989) in this regard), and their investigation is left for future re-
search.

Third, this paper extends and generalizes the original Ho and Lee model
(1986) in numerous ways. This generalization generates insights into the contri-
butions and limitations of the existing implementations of the Ho and Lee madel.
First, on the pedagogical side, an alternative perspective and notation from that
used by Ho and Lee is employed. Instead of focusing upon bond prices as in Ho
and Lee (1986), we concentrate on forward rates. This ‘‘modification’” makes
the model easier to understand and to perform mathematical analysis. Second,
we generalize the original model to include multiple random shocks to the for-
ward rate process. This allows bond returns to be imperfectly comrelated, in con-
trast to Ho and Lee (1986). Last, and perhaps most important, we study the con-
tinuous limit of their discrete trading economy. To so do, we reparameterize the
discrete time process in terms of the continuous limit’s volatilities. This reparam-
eterization identifies Ho and Lee’s path independence condition to be equivalent
to a restriction that the volatility of the forward rate process is a constant. It also
points out a limitation in the procedure suggested by Ho and Lee ((1986), p.
1023) for estimating the discrete processes’ parameters. Ho and Lee recommend
estimating the discrete processes’ parameters, including the pseudo probability,
implicitly by matching the model’s value to the market value of various traded
contingent claims. We show, however, in the limit that contingent claim values
only depend on the volatility parameters, and not the pseudo probability. This is
analogous to the situation that occurs with the binomial approximation to the
Black-Schales model. Cansequently, implicit estimation of the pseudo prababil-
ity in this manner will yield unstable estimates. Our reparameterization avoids
this instability and allows one to estimate the Ho and Lee model’s parameters, a
single volatility, using only historic data.

An outline of this paper is as follows. Section II presents the terminology
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and notation, Section III presents the family of term structure mavements, while
Section IV introduces the arbitrage-free restrictions. Section V provides exam-
ples of single random shock models, ane of which is the Ho and Lee (1986)
madel. Section VI provides an example of a two random shock model. Section
VII studies continuous time limits, Section VIII analyzes contingent claim valua-
tion, and Section IX concludes the paper.

Il.  Terminology and Notation

This section presents the model’s terminology and notation. We consider a
discrete trading economy of length [0,7] for a fixed 7 > 0. The interval between
trades is of length A > 0, where ¥ intervals of size A compose a unit in time
(i.e., & = 1/N). Given an arbitrary trading time ¢ € [(,7], we write 2 = IN = r/A
to represent the number of trading periods of length A prior to and including
time .

A family of default-free discount bonds trade, one for each trading date T e
[0,7]. The T-maturity bond pays a certain dollar at date 7. P(¢,T') will denote the
time ¢ price of the T-maturity bond for all T € [(,7] and z € [},T]. We require that
P(T.Ty = 1forall Te [0,7], and that P(z,T) > O for all T e [0,7] and ¢ € [0, T].

Given bond prices, the forward rate structure is determined (and con-
versely). The forward rate at time ¢ for the time interval [7.,7+ A], (¢, T), is
defined by

f@T) = —[log (P (T+A)/P(T)]/A,

) for all Te[A,...,7] and te[G,A,... ,T—A] .

This implies

ji=t
for all Te[A,...,At] and re [O,A,..,,A(T— 1)] )

T-1
5 P(T) = exp(— Zf(rJA)A),
2

Three aspects of Expression (2} need emphasis. First, the arguments of the far-
ward rate are in units of time. The summation index, however, is over the num-
ber of trading intervals between ¢ and T — A, and this accounts for the bars over
the times r and (T — A}. Second, since the forward rate f(z,T) corresponds to the
future period [T, + A], the upper limit of the summation index stops at the trad-
ing point T-1). By definition, P(T,T’) is always one, and this parameter choice
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is excluded from the expression. This explains why the current date ranges from
[0, ..,AT—-D).t

The spot rate at time ¢ (over [t,1+ A7), #(2), is defined to be the forward rate
attime ¢,%i.¢e.,

(3) r(e) = fe) -

Finally, we define an accumulation factor, B(z), corresponding to the price
of a money market account (rolling aver at #(#)) initialized at time O with a dollar
investment, i.e.,

I and

-1
exp(Zr(jA)A) for all s [A,... ,A(t-1)] .
=0

it

B(0)
(4)

It

B(1)

The remainder of this paper studies the arbitrage-free pricing of the traded
discount bonds. Intuitively, an arbitrage opportunity is any “‘trading strategy’’
with a zero initial investment, nonnegative cash flows with probability one, and
strictly positive cash flows with positive probability. In the context of a discrete
trading economy, Harrison and Pliska (1981} prove that there are no such arbi-
trage opportunities if and only if there exists a (equivalent) prabability {(measure}
making relative asset prices (relative to B(f)} a martingale. In essence, the ability
ta invoke the Cox and Ross (1976) risk neutrality pricing argument is both neces-
sary and sufficient for the absence of arbitrage opportunities. Consequently, the
study of arbitrage-free bond pricing reduces to the study of conditions under
which “‘martingale measures'’ exist. This is the perspective followed in this pa-

pet.

[Il.  Term Structure Movements

This section presents the family of stochastic processes representing for-
ward rate movements. Once specified, this family uniquely determines the spot
rate process and the bond price process.

! The limit of expression (1} as A - ( gives the appropriate “‘instantanecus’ expressions. In-
deed, as A — 0, given aP(¢, T )T exists forall Te [0,7] and ¢ € [0,T],

T4 T
P Ty = nlimo exp(— Zf (LJA)A) = cxp(— J} (f,s)ds) .
f=1 I

where f (t,s) = lim f{t.s+4A)
A—(
= lim ~[log P(ts+A) — lag P (t.5)] /A
A

__dlog P(t,5)
B as '

2The spot rate, r()A = log({l/P(rr+A)) = fir.0}A, correspands to the continuously com-
pounded equivalent riskless return eaned on a (¢+ A)-maturity bond over [¢,0+ A].
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(C.1) (Family of Forward Rate Processes). For fixed, but arbitrary T e [A, ...,
A(T— 1)1, the forward rate f(r,T'} satisfies the following stochastic process,

fa,1) = f(O,T)+;aj [4,(GATY = v, (GATY] + ;vl(jA,T)
(5}

ol

}
+ij [1,GAT) — v,(JAT)] + sz(ja,r) ,
i= i=
for all 1 € [A,...,T), where {f(G,0): Te[Q,.. o AT - 1}]} is a fixed nonrandom
initial forward rate curve, a;, b forje {1,..., T—1} are random variables taking
on the values {0, 1} with joint probabilities, summing to one, given by

ool if a4, = 0, b = 0
G () =0, b =1
Q() i a, =1, b =0
9,0y if g = 1, b =1

These probabilities are indexed by j since, in general, they can depend on
any information available prior to time jA.

e [0,7]1%[0G7] — R, v [07]1 %[0,7] — R, #y: [0,7]1 X[0,7] = R, wa
[0,7] X [},7] — R are random functions that, at time ¢, can depend on the
infarmation available prior to time ¢.

This forward rate process has two random shocks, represented by the ran-
dom variables {aj,bj}, which are correlated or not, depending upon the specifica-
tion of the joint probabilities. The magpitude of the “‘upward’’ movement of a
jump at time t is denoted «(z,T) for a; and u,(r,T) for b;. The magnitude of a
“downward'' movement of a jump at time ¢ is denoted v, (¢,T'} for a; and v,(r,T)
for b;. These magnitudes can depend on all the information available prior to
time ¢. Also specified is a fixed initial forward rate curve {f(0,T): T« [0,...,
7 —A]} from which the process moves. The key issue in the subsequent analysis
is the restrictions required upon these jump magnitudes such that the resulting
forward rate process is consistent with no arbitrage opportunities.

Condition {C.1) determines the spot rate process as

(@) = £+ a,[u GAD — v GAO] + D v (AL
) =t =t
£ b [y () = vUAND] + D v, (A
£ _

i=1

Both arguments in the process shift simultaneously across time.

Define the relative price for a T-maturity bond as Z(¢,7) = P(,TVB() for T
€ [0,7] and ¢ € [0,7T]. The relative bond price is the discount bond’s price in terms
of a new numeraire, the accumulation account. Given the expressions for P(2,T)
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and B(z) in terms of the forward rate and spot rate, respectively, we can rewrite
the relative price Z(z,T) as

T-1 -1
(7) 2T = exp[— > F@ib)A = > F(jAjA)A
=t i=0

Substitution of the stachastic pracess for forward rates into Expression (7) yields

T-1
2Ty = exp[— Zf((], JAA

T-1 %
—ZZ[ (1, GALJAY = v (A JBY) + v, (id,jA) ]| A
jeti=

T-1 ¢

®) [B:(u, (A JA) = v)(i,j8)) + v, (A, jB)] A

M
M

L
I
— e
il

M
M“"

1

[ ( (iAJAY — vl(xA,JA)) + VI(LA,JA)]

[ -
I
I

e

(6,1, (iALJAY — vy (I8, jA)) + v, (i jA) | A

-
]

—_
]

—

Changing the order of surnmation? and combining terms gives
T-1
Z(,T) = exp —Zf(O,jA)A
(9 - [ ( (iA,jA) + v, (i4, JA)) + v, (iA, JA)]
- [ (4GB JA) = vy (B JA)) + vy(id,jA) | A

for Te[A,...,A%], andze[A, ..., AT—1)].

1 The identity used in this change of summation is

-l -1

Kl [
SO WED = W (i) -
J=li=1 I=1g=1
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Expression (9} implies the following stochastic difference equation for

2@,1),

T-1
Z (4, (2jA) — vl(rJA))A]

i=

T-1
> (048 - uz(tJA))A]

j=t

Z,TYy = Za— AT exp[—a;

T-1
(10} — > v (1iA)A — b,
j=t

T-1
_ zvz(t,jﬂ.) A] .
j=?

forTel[A,...,AT]andr€[A,. .., A(T—1)].

IV. Arbitrage-Free Pricing and Term Structure Movements

This section analyzes the restrictions (necessary and sufficient) on the jump
magnitudes in the forward rate process for there to be no arbitrage opportunities
in the economy. These restrictions, by implication, generate the bond pricing
formulae satisfied by the discount bonds. The correspondences among these re-
strictions and thase contained in Ho and Lee (1986) and Heath, Jarrow, and Mot-
ton (1987) are identified.

The following proposition provides the major result of the paper.
Proposition I. (Characterization of Bond Prices and Forward Rate Processes).
Given a family of forward rate jump magnitudes, {i,(-,7), v, (-,T}, u,(,T),
va(-,T): T e [A, ... ,A(F— 1)]}, satisfying Condition (C.1), the following expres-
sions are equivalent:

(11.a) The forward rate process given by (C.1} is an arbitrage-free pricing
process.

(I1.b) There exist probabilities, summing to one and denoted by {mg(f),
Tai(f)s Tiold), 7 ()} with respect to {a;, b} for each j e {1,...,
T—1}, such that Z(z,7) is a martingale with respect to these probabili-
ties forallTe[A,...,AT]and e [0,..., T—A].

(I1.c) There exist probabilities, summing to one and denoted by {my(/},
To1(f): Tialf), m(((f)} with respect to {a;,b;} foreach je {I,...,7— 1}
such that

T-1

oo (7 ) exp] - Z [v, (i) + vy (1,jA)] A}Jr
_ i

o, (2 ) exp —Z [V (t7A) + 1y (1,A)] A}"f‘
L i=t

(1 ) exp —Z[ul(rJA) + v, (1jB)] A+

| |
> -

(1) exp] —Z u (1jA) + 1y (1,jA)] A
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forallTe[2,...,T)andZe[l,...,T—1].
Proof. Let expectation with respect to {mg(r), mo;(6), mo(0), 7, ()}, given the
information available at time t — A, be denated by E* 4(-).

Condition (11.a) is trwe if and only if (11.b) is true (stated earlier in the
text).

But, Z(:,T) is a martingale with respect to these probabilities for all £, 7 if
and only if

E¥ (Z(T)) = Z(—AT) forall 1,T.

Substitution of Expression (10) yields

-1 T-1
Ef‘_ﬁ[(exp(—a;(z (ul(r,jA) -V (IJA))A) - Zvl(rJA)A) .

=t i=r
T-1 T-1
exp(— b;(z (uz(rJA) - vz(:JA)A)) ~ sz(rJA)A))} =1.
i=t i=t

This last expression, in terms of probabilities, is Expression (11.c). O
Expression (11.b) is called the pricing condition because it asserts that
Z(z,T) is a martingale under the prababilities {mq(r), 7, (1), m4(), 7, (O} forT e

[Q,..., 7—1]. Denoting expectation with respect to these probabilities, given the
information available at time ¢ as E *(), yields

(12.2) Z2(1.T) = EX(Z(T.T))

(12.b) or P(r.,T) = EX(UB(T))B(t) .

Expression (12.b} gives a pricing formula for the discount bonds. To calculate
these values, one starts at time T — A and calculates the expectations backward in
time (to time ) using the law of iterated expectations and Expression (9). Expres-
sion (12) carresponds exactly to the pricing formula of Heath, Jarrow, and Mat-
ton (1987).

It is important to point out that the pricing conditon (11.h) combines two
restrictions on the probabilities {frrm(i), 'n'm(f}, (), m (D} for 1 € [0,. ..,
7—1]. The first is that, for a fixed 7, these probabilities make Z(¢,7) a martin-
gale. In this case, the probabilities could depend on T and, hence, this restriction
only implies that there are no arbitrage opportunities between the T-maturity
bond and the accumulation factor B(r}. The secand restriction is that the prababil-
ities are independent of T, making all bonds martingales, implying that there are
no arbitrage opportunities present simultaneously across all bonds. These two
restrictions are separately imposed in the continuous time madel of Heath, Jar-
row, and Morton {1987).

Expression (11.c) is the forward rate process restriction. Given the proba-
bilities {mgo(t), 7 (0), Tio(2), W, D} for all 7 € {0,..., T—1}, it specifies the
relationships apong {u,,v,u,,v4} that must be satisfied for there to be na arbi-
trage opportunities present in the economy. The simultaneous existence of such
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probabilities and jump magnitudes will be demonstrated in subsequent sections
through explicit examples.

Far the ane random shock case (obtained by setting u,(JA, T} = w,(jJA,T) =
Oforallje{0,...,T—1}and all T€ [0, ..., — Al), Condition (11.c) simplifies
considerably. Let g4o(j) = L —4(j), q14(j) = g(/) denote the probabilities that a;
takes on the values {0,1}, respectively. Similarly, let moo(j) = L —7(j), m,4(f) =
7(j) denote the martingale probabilities. Dropping the subscripts on {u,v}
yields,

. -
(13 (I-=(: )exp{ Zv(rJA)A] + (1) exp{ Zu(rJA)A]

i=t

forTe[2,...,7—1]and 7€ [L,..., T—1]. This is identical to the no arbitrage
condition contained in Ho and Lee ((1986), p. 1017, Expression (10)).* Hence,
Expression {(10.c} provides an appropriate generalization of Ho and Lee for the
multiple binomial case.

In the continuous time model of Heath, Jarrow, and Mortan (1987), Condi-
tion (11.c} corresponds to their forward rate drift restriction; however, there is a
subtle difference. In Heath, Jarrow, and Morton (1987), also given was a vola-
tility function, which implied the existence of a unique ‘‘martingale measure.”’
The variance restriction has not yet been imposed in the discrete model.

In general, the martingale probabilities (if they exist) need not be unique.
This nonuniqueness will be evidenced below in the examples. Ho and Lee
(1986) get uniqueness in their model by imposing a second condition, called the
path-independence condition. We show below that this is equivalent to a part-
icular specification for the variance of the forward rate process. In fact, for the
single random shock model, specification of the conditional variance of
[fe+A,T)—f(,T)] uniquely identifies the martingale probabilities in terms of
the probabilities ¢} and the forward rate parameters {u,v}.

V. Example (One Random Shock Processes)

This section presents the one random shock forward rate process to illustrate
the application of Proposition 1. Ho and Lee’s (1986} model is shown to be a
special case of this example.

The forward rate process, under a single random shock, is written as,

(14) f(.Ty = FO.T) + Za [(GATY - v(jA,T)] + EvoA Ty,

=1

4 To make the identification, let (7} be independent of ¢. In the notation of Ho and Lee (1986},
our 7 is Ho and Lee’s (| — ). Starting from7 = 1,

ATy = exp(— u(A‘jA)A) and

-l =

h¢Ty = exp(»— v(A,jA)ﬁ),
=1

.
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forTel[A,...,A(T—1)]and z€[A,. .., T, where g(j) equals the probability that
a;equals 1. The subscripts are omitted for simplicity.

As explained in Expression (13), the necessary and sufficient conditions on
the jump magnitudes {x(jA,T),v(jA,T)} for the absence of arbitrage opportuni-

ties is the existence of probabilities m(z) for 7 e [0, ..., 7— 1] such that
T-1 T-1

(15  (1-=(1)) exp{— Zv(rJA)A} + w(i)cxp[— Zu(r,jA) A} =1,
j=1 i=t

for Te{l,...,7—1} and 7€ [0,..., T—1]. These probabilities {m(n} are, in
general, nonunique.

To verify this assertion, we characterize the forward rate processes consis-
tent with arbitrage-free pricing and the imposition of the following variance re-
striction,

(16) Var,_ (f(6T)—f(t1=AT)) = (1. T)A,

where ait,T) is a random factor that depends on the information available prior to
time r. A simple caleulation shows that Condition (16) is equivalent to

a() (1 —g(D)) [T — v, 1)1 = (¢ THA

(17 - - 12

oru(tT) — v(t,T) + a0 T)[Arq(2)(1-q(e))] .
This yields

T-1

_Zu(wa\)a =
(18) Jr:rT—l
=S [reim) s+ oy a® (o) (1-a()"] -
i=t

Substitution of this expression into {15) and algebra gives
T-1
> v(niA)A =

(19)""

log (1 +1r(f)(cxp{— ia(”‘&)ﬂm/(q(})(l e )))uz]_ 1) ‘

The solution to Expression (19) is
v (jA, TA) =

T
{log (1 +ﬂ(f)(€xp{— PRI RINICIOIETONE ‘”A”] ~ 1))

i=j

T-1
—log (1 +1r(f)(cxp[— Za(jﬁ,iﬁ) CIOICETINNE mAE"Q] - IJ)J/A -
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Summing acrossj = [,..., [ generates

i

Zv(jA,TA) -

=1
> {mg (1 + w(}')(ew{— > o (iain) @) (1~ qi))” "2A3"2] - 1)
oo’ h =

~1
- log(l + m)(exp[— PRNINICTHICET IO "’EA”} - 1))] /\ :
=J

The forward rate process consistent with no arbitrage is, therefore,

FT) =
FOT) + > aoGATIA/ () -aGHD

i=1

; T
an Z[]og (I + () (expl—zo'(jA,EA)(‘I(f)(l —q(D3 1;2_,33;2} - 1))
. i=4

i=1

T~1
_ log(l +ﬂ(j)(expi— Zc(m,m(qo)(l =iONE I”Am} - 1))] /‘-‘- ;

P

forallTe[A,...,A@—1]and t€[A,..., AT).
Approximations to (21) for small A are analyzed in Section VII below. Two
special cases of Expression (21) are worth studying further.

A. Hoand Lee’s {(1886) Model

This special case provides an alternate derivation of Ho and Lee's model.
This alternative derivation clarifies the use of their path independence condition
in obtaining uniqueness. To specify Ho and Lee's model as a special case, set the
variance of the forward rate process, o(t,T) = o, where ¢ > 0 is a positive
constant. Furthermore, let g(f) = ¢ > 0, a strictly positive constant, so that the
probabilities of jumps are constant across time. Last, we search for constant mar-
tingale probabilities, i.e., w(r) = 7 >> 0, a strictly positive constant.

Under these constraints, (20) can be written in the simplified form,

¥

Zv(j&,TA) = [log (l+1'r(e—ﬂ"ﬁm——1))

(22) i=1
—log (l +1r(e_(?_;)‘mm-— 1))]/A ,
where & = a(g(1 —g)) .

This form of the expression {with notational changes) is identical to the
unique forward rate solution, given the path independence condition, pravided
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by Ho and Lee {1986).5 This identification proves the assertion made previously
that the path independence condition is equivalent to a particular restriction upon
the variance of the forward rate process. The forward rate process is, therefore,

fGTy = fOT) + > apb/h
(23) =1

+ [[og (1 +,n_(e—ﬂ-&3’2__ 1)) — log (1 +ﬂ(£-(?-?)¢am_ l))]/A ,

forallTe[A,...,A(T—1)]andce[A,..., AT], where & = a/(g(1 —g)".

This solution depends on two parameters, the martingale probability w and
the **adjusted’’ variance parameter, ¥ = a/{g(1 — ))%. The volatility parameter,
a?, can be estimated from historical observations of the forward rates. The prob-
abilities 7 and ¢ can be specified arbitrarily to obtain the best fit.

Of course, given the simplistic structure of the forward rate process (23),
this process will only provide reasonable approximations (if at all) for small A.
The limiting form of (23) is examined in Section VII. In the limit, the need to
specify 7 and g vanishes, giving a parsimonious model of only one ‘‘observ-
able’" parameter 2.

B. The Exponentially Decaying Variance Madel
An alternative forward rate process consistent with no arbitrage opportuni-
ties can be obtained by making the following specifications,

Ty = ol MT704

for positive constants ¢ >> 0, A == 0, and gty =q=>0.
Following the procedure employed in the previous example generates the
forward rate process given by,

T =fO,Ty+ > ayexp{- WD) (T—j)A}/A
i=1

i T
o > |log (1 + () (cxp[—— > Wexp(~ (V) —j)A}Am] - 1))

=1

T-1
—log (1 +»n(j)(exp[—2¢ cxp{—()\f?.)(i——j)A}Am] - 1))}/&

i=j

where = o/(g(l —g)Viforall Te[A,...,AF~1D]andte[A,..., AT].

5 Using the identification in footnate 4, Expression {[9) is equivalent to

TY = 411—,

(- + wslT-Y

where 1 = § = ¢ —aa®igll-4)|? = Q, which carresponds to the unigue solution of Ho and Lee ((1986),
p. 1019, Expression (19)).
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VI. An Example: Constant and Exponentially Decaying
Model

This section studies an example of a forward rate process subject to two
random shacks, a “‘short-term’’ and a “‘long-term"" factor. The ‘‘long-term’’
factor uniformly affects all forward rates equally, while the **short-term’” factor
dampens exponentially with time to maturity. To obtain this model, we further
restrict the process given in Condition (C.1).

First, we restrict the joint probabilities of the random variables {4;,5;} to be
constant across time, and to satisfy

4o = (1-9,)(1-4,)
do () = (1-4,)4,
9, = 4,(1-4,)
9,{J) = 4,49,

(25)

where g, is the probability that a; takes the value L, and g, is the probability that
b; takes the value 1.

This specification has two implications: (1) {¢;,b;} are independent across
time; and (2) a; and b; are independent within a particular time period. We also
restrict variances of the change in the forward rate process as follows,

(26.2) var,_,(f(t.T) — f(t—AT)1b;) = ojA
(26.b) Va:r_&(f(rjr) - f(t—A,T)Ia;) _ Gie—,\cr—z)A ’

for strictly positive constants &,0,,A > 0. Expression (26.a) captures the **long-
term’’ variance, while Expression (25.b) captures the ‘‘short-term’” variance.
These conditions alone will not generate unique martingale probabilities. Conse-
quently, to identify a unique element from the class of martingale probabilities,
we add the following conditions.

First, we want the martingale probabilities to be constants that satisfy

(D) = (1=7)(1—m,)
Ty (1) = (1_"71)“2
(1) “1(1 - '”2)
w1 = ™y

This implies that the martingale probabilities preserve the statistical indepen-
dence of {aj,bj} across time and from each other. Substitution of Conditian (27)
into the no arbitrage condition, Expression (11.¢) yields

T-1 T-1
("ﬂ'l exp[—— Zul(tJ&)A} + (1 ——'rrl)exp{—Zvl(rJA)A}) -

j=t

T-1 T-1
(«:2 expl—Zuz(rJA)A} + (1-m)) cxp{—- sz(:JA)AD = 1.
j=t 0

=t

1l

(27)

il

(28)
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We add an additional restriction that induces additivity in the forward rate proc-
ess components. Although, by Canditions (25) and (26), the random variables
generating the shocks {aj,bj} are independent of each other, this does not neces-
sarily imply that the two separate contributions each of these shocks have on the
forward rate process (Expression (5)) are independent. A dependence could oc-
cur through a relationship between the jump magnitudes {u,,v,} and {,,v,} them-
selves. This is evidenced in Expression (28), where the product could be 1 as
long as both {u;,v,} and {uy,v,} depend on each other in offsetting ways. To re-
mave this dependence, and to make the two separtate shocks in the change in
forward rates statistically independent, we add the following restrictions

T-1 T-1
(29.2) ‘nlexp{— Zul(r,jA)A] + (l—wl)exp[—— Zvl(z,jA)A] =1
j=t

i=t

T-1 T-1
(29.b) ﬁzcxp[—Zul(rJA)A} + (1 —1:2) exp{—sz(rjA)A} =1.
i=t j=t

Under these restrictions, the previous two examples (Sections V.A and
V.B) apply in an additive form, and the two separate shocks to the forward rate
process are statistically independent.

FOTY = FOT) + > ab /A + > by exp{— (W) (T-j)A}/A
i=1 i=1

+ [log (1 + ﬂl(cxp{— i_"tplAm} - 1))
~log (1+m (exp{~ (T-B)w, 4} - 1)}] /A

; T
+> [log (1 + ﬂrz(exp{—— >y exp{— (V2 —j)A}Am] - 1))

f=1 {=§

T-1
~log (1 + wz(exp{—— >y exp{— (M2)( —j)A}Am} - 1))}/&
=7

forallT e [A,..., A(r— )] and 1 € [A,..., AT], where §, = a/(g,(1 —4,))*
and = 0/(g,(1 — g))*.

(30)

VIl.  Limit Economies

This section discusses the limiting form of the discrete trading models in
Sections V and VI for a special family of the forward rate processes. The family
of processes caonsidered has: (1) the variances of the changes in the forwaed rate
process are deterministic functions of time; and (2) the original probabilities and
the martingale probabilities of the random variables are constant and independent
{as in Section VI). These conditions are imposed for expositional purposes in
arder to utilize the simple form of the Central Limit Theorem in the limiting
processes. These restrictions can be readily generalized, but the mathematics be-
comes very sophisticated.
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Using the additivity conditions of Section VI for multiple random variables,
it suffices to consider the single random variable case. The specification of the
variance of forward rate process is given by,

(31) Var, ,(f(T) - f(t-AT)) = ¢* (DA,

where a: [0,7] X [0,7] = R is 2 nonnegative, continuous, deterministic function.
Under Expression (31), the forward rate process is given by Expression
{21), rewritten here for convenience,

Ty = fO,T) + ZG;G(JAiT)(Q(l _q))HIIZJA

i=1

: 7
(32) + z [log (1 + 'n'(cxp!— Z“(ﬁ-‘-:fﬁ)(q(l ) lszm} _ 1))

f=1 i

T-1
~ log (1 + ‘n(exp{— ST o (A Ay g1 -q)” ”ﬁam} - 1))]/3 ,
=y

forall Te[A,...,A(r— D] andre[A, ..., AT].
To approximate this solution for small A, we use the Taylor series expan-
sion,

T
log (1 + ﬁ(cxp[— > oAy (g1 —q))” ”%.\.3"2] - 1)) =

i=j

T

@3) -7 o(hid)(g(l-g) AT

(=
= 2
T

+E£12—_“)(;a(ja,m)) (@1 -~ 'A% + o(a%),

K|
where  lim O(i) = 0.
A= A
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Substitution of (33) into (32) gives,

fGT) = fOT) + > aa(ATIg(1-9))" " /A

i=1

— > e (AT (g(1-9) * /A
(34)

2
+w(1—w)z [(ZU(JA LA)A)
i=1
T-1 2 )
-(Za(m,m)a) 2q(1-q) + 0(4%),
i=j

forall Te[A, .., AT— D)l and te[A,..., AT]. This is an approximate solution
to the forward rate process for small A.
We consider the limit of this expression as A — 0 by subdividing into three

terms. First, "

7 2 T-1
Z(Zaga ;A)A) - (Za(jA,i&)A) A
LAY =y _
(35) A{Elo A B

!

2 I
J’ %[fc(s,y}dy] ds = ZJ'G'(S,T)(JIU(S,)J)d)’)dS-
a 3 0

¥

The integrals are well-defined since o(z,T) is continuous and bounded. Second,

by a generalized form of the central limit theorem (see the Appendix for a proof),
. ) - . 12

> ac(iAT)g(l-g) 7 /A ~ qa(jAT)(a(1-g) " " /A

a6 Jim =

A—{ 7 12
[Zcﬁ(m,r)l /A

i=1

converges in d;strlbuuon to a standard normal random varsable. Third,

Qifwm =
37 lim Z(q moGATI(q(1 - ) /A = +mifq S
07=1 —wifg < m.

This expression only converges if w = g. Hence, the approximate forward rate
process f{z,T) converges in distribution to a random variable only if # = ¢. In
this case,

1] H

d i i T
(38) FaTY—=fFO + fcr(s,T)a’W(s) + J’(}'(S,T) J.ar(s,y)dy ds ,
a
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as A — 0, where {W(): ¢ € [0,7]} is a standard Brownian motion, since
[éo(s, T)dW(s) is normally distributed with mean zero and variance [§a%(s,7)ds.

The form of the drift function in Expression (38) is identical to that obtajned
in Heath, Jarrow, and Morton (1987). The limiting form of the distribution in
Expression (38) depends only on the volatility function, o(z,T}, specified in Ex-
pression (31), and it is independent of the choice of g, as long as ¢ = 7. This
independence is significant. [t happens because (when = g) the “‘drift’” term is
subtracted fram the forward rate pracess in Expression (34). This is the third
term on the right-hand side of Expression (34). The effect that different values of
7 (or g) have on the forward process is, thus, neutralized. The fact that the proc-
ess converges only if m = ¢ is due to the fact that, in the model studied here, the
martingale probability o is chosen to be a constant over time. This restriction
was imposed for expositional purposes, and the analysis can be generalized in the
appropriate fashion. The mathematics, however, rapidly becomes quite sophisti-
cated.

We next specialize Expression (38) for the three cases previously studied.

A. Hoand Lee's Model

If we set a2(¢,T) = a?, then Expression (38) simplifies to,

(39) f(f,T)—cif(O,T) + aW () + Uz(Tt—tl/ 2) ,

where {W(2): ¢ € [0,7]} is a standard Brownian motion. Here, Expression (34),
with T = g = ¥ and a(t,T) = o2 > 0, provides an approximation ta the continu-
ous time model] given on the right-hand side of Expression (39). These substitu-
tions generate

@) f@T) = fOT) + > (a,-12)20/A + [Te-F12]a.

=

For practical applications, the importance of this approximation is that the pa-
rameters of this model can be estimated directly, using historical forward rates.
This is in contrast to the original form of Ho and Lee’s model, where the parame-
ters need to be estimated implicitly.

B. The Exponentially Decaying Variance Model

If we set (2, T) = ale~MT -4 then Expression (38) simplifies to
t
d
ey STy + jcre"(m)g””dW(s)
i
(41)

¢ T
+sz'e—(xfz)(r—s)J'e—(m)@—s)dyds 1

¥

where {W(2): ¢ € [0,7]} is a standard Brownian motion. Unfortunately, the contin-
uous time process on the right-hand side of Expression (41) depends on the path
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of the Brownian mation process. The binomial process given in Expression (34),
withm = ¢ = ¥ and a¥{¢,T) = ¢le—MT—4, provides a useful numerical approxi-
mation of Expression {41) for pricing contingent claims, i.e.,

FT)=fO,T)+ Z (b~ 112) 20" OPT=D4 /a
i=1

(42) . -
£ T
L ~OVRHE-DA 5 PRI YN 2
+§Z [(Zae ) (Za ) } +0(A )
C. Combhined Constant and Exponentially Decaying Model
If we set
ar,_,(f(eT) - fFG—AT)| b) = a}A
and Varrha(f(:,T) — f(e=ATY| a;) 2,°2T-04

N

Ty

and impose the additivity condition (as in Section VI), then setting m = g = %
yields the following forward rate process consistent with no arbitrage opportuni-
ties,

d ¢
FUETY=f OT) +a,W, (1) + J’crze_wz)(r_ﬂdwl(s)
4]
(43) ; T
+U%(TI-——I2}’2) + criJ.e_(m)(r_”J-e_(m)@_s)dydif ,
1} 5

where {W,(1): t € [0,7]} and {W,(2): 1 € [0,7]} are independent Brownian motions.
A numerical approximation for this model is given by

FUTY=£C0,T) + z( ~12)20, /A
i=1

I -, .
(b~ 12)20,e” ¥PTI2 A (11 — #12]) o}
(44) =

2
(1;2)2 [(ZU — (Wi~ ;)ﬂ ) (ZU e—(MZ)(! J)AA)]

i=1 i=j

ro(a?).

VHI. Contingent Claim Valuation

The major application of this methodology is to price interest rate dependent
contingent claims. The pricing condition in Proposition 1 (11.b) can be used to
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obtain pricing formulas for all interest rate dependent contingent claims, e.g.,
call options on honds. The detailed analysis is contained in Heath, Jarrow, and
Morton (1987). To illustrate this procedure, let C(T) represent the only cash flow
to the contingent claim, and let it be received at time T. Given that this cash flow
can be duplicated by a self-financing trading strategy involving the bonds and the
accurnulation factor (this is our definition of an interest rate dependent contingent
claim), the value of this contingent claim at time ¢, C{¢), will be

(45) C() = BHEI(CT)/B(T)) -

This value can be calculated recursively.

As Expression (45) makes explicit, only the martingale probabilities
[Ta0(i)s Toi(f)s Tiali)s Tu(i): j e {1,..., 7} are needed to price contingent
claims. It is, therefore, the dynamics of the forward rate process under these
prababilities that are relevant in the recursive computation.

The continuous time approximations studied in Section VII are for a special
case of the general model. This special case has the original probabilities {g) and
the martingale probabilities (1) being constant across time, and the variances of
the changes in the forward rate process (o(z,T)) being deterministic functions of
time. Under these restrictions, the discrete tite process converges to a continu-
ous time limit if and only if @ = ¢, i.e., the original economy is risk neutral.
This appears to make the approximation results of little use, but it is not the case.
The approximating discrete time processes (Expressions (34), (40), (42), and
(44) are exactly the proper processes to use when approximating contingent
claim values in continuous time economies where the volatility functions are de-
terministic.

Ta prove this assertion, consider the continuous time economy, correspond-
ing to the case where the volatility parameters are deterministic functions of
time, i.e.,

2
(46) df (t,T) = a(e,T)dt + Zai(r,:r)arw;(:) ,

i=1

where  {W,(5),W,(t): ¢ € [0,7]} are independent, standard Brownian motions
initialized at zera,

o; {(t,s): 0 < ¢ =<5 = T} — R is jointly measurable for i = 1, 2,
satisfies

T
J’al.(t,T)zdt < +owfori = 1,2,
o

i=1

2 2 [
atT) = = S a(LTy,) + Za’i(r,T)jcri(t,v)dv,
i=1 T

and ¢(¢) for i = 1, 2 are bounded, adapted processes represeating arbi-
trary “‘market prices for risk.”’
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The drift term in this expression is specified such that the process admits no arbi-
trage opportunities (see Heath, Jarrow, and Morton (1987)).

In this economy, Heath, Jarrow, and Morton (1987) show that there exists a
martingale measure {, (corresponding to ) and independent Brownian motions
{W,(6),W,(2): £ € [0,7]} with respect ta O such that,

2 T 2
@47 daT) = ZUI(I,T)JGi(r,v)dv + > e THdW ) .

i=1 i=1

(Compare this expression to Expression (38).)

Contingent claims are valued under this process with the  probability mea-
sure. Hence, for the contingent claim described prior to Expression (45), the
following valuation formula applies

(48) Cty = E(C(TY/BTNBQ) .

Ta (numerically) approximate this value, we need to approximate the stochastic
process in (47), not (46). But Expression (47) is the process that exists in a “'risk-
newtral'' ecanomy. Hence, to approximate Expression (47), we need a discrete
time economy where m = g. This, however, is the economy we derived our
limiting approximations for in Section VII. Consequently, the analysis on Sec-
tion VII is still relevant to practical applications.

The continuous time approximations of Section VII, of which the Ho and
Lee (1986) model is a special case, also share the characteristic that the limiting
process for forward rates is independent of the parameter . Hence, the limits of
the contingent claim values will be independent of 7 as well. This insight implies
that a procedure that involves estimating 7 by inverting contingent claim values
will provide unstable estimates for 7. Indeed, for small step sizes, the discrete
pracess will provide an approximation to the continuous time limit, and the con-
tinuous time limit is insensitive to «. This is a limitation of the estimation proce-
dure suggested by Ho and Lee ((1986), p. 1025). An estimation procedure based
on the parameters of the limiting process (Expressions (38), (39), (41), and
(43)), however, will avoid this difficulty.

IX. Summary

This paper analyzes the binomial approximation to the continuous trading
term structure model of Heath, Jarrow, and Morton (1987). As such, it makes
three additional contributions ta the literature beyond that contained in the origi-
nal Heath, Jarrow, and Maorton (1987) piece. First, it makes the abstract method-
ology of the continuous time model accessible to a wider audience by obtaining it
as the limit to a discrete time model. Second, it illustrates a numetrical approxi-
mation procedure useful for calculating the continuous time models in the origi-
nal paper. Unfortunately, many of these models do not have simple trees, and
additional research is needed along these lines to develop faster and mote effi-
cient estimating procedures. Third, it also extends and generalizes the model of
Ho and Lee (1986). First, it extends it by offering an alternative notational
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scheme that is more conducive to formal analysis. Second, it generalizes the
Ho and Lee forward rate process to include multiple random shocks. Third, it
provides an alternative reparameterization of their discrete trading model, which
facilitates histarical estimation of the parameters. This is in sharp contrast to
the implicit estimation procedure suggested by Ho and Lee that can generate
unstable estimates.

Appendix: Proof of Expression (36).

Let0 < £ =<g(jAT)<Lforallje(l,...,T1and T e [A,..., A(T—1)],
since @ is a continuous function on a compact set. Consider
51 1a0(jA,T)g(l —q))~#jA. This is the sum of 7 independent random. vari-
ables. First,

E(1a,a(jAT)(q(1 - ) /A —qo (AT (g(1—g0)" " /AP) =
g(1-'a* AT (a1 - )~ 4"
-’ GAT) (g1 — )~ 7aY =
[(1— g+ &) [Cat — )0’ ja,T) a™]

and s* = iVar(aja'(jA,T)(q(l——q))_m\/A) = ia’z(jA,T)A.

i=1 i=1

S [a-9* + @[ —gn"?a’ ya,r) 4]

Hence, lim =% —
E—»m r
Zcrzua,r)] A"
=1
: 3
25 a (JAT) _
; 2L’ -
= = —0 as t— .
- - 31 3
! (¢

kfd
[Zcrl(m,r)l
F=1

By Breiman ((1968), Theorem 9.2, p. 186), as 1 — ,

Z [aja(fA,T)(q(l _q))—uz\/A — go(jAT)q(1 —q)~ IIZJA

J=1

/iaz( JATHA

F=1

converges in distribution ta a standard normal random variable.
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