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Valuing Derivative Securities Using the Explicit Finite
Difference Method

John Hull and Alan White*

Abstract

This paper suggests 2 modification to the explicit finite difference method for valuing
derivative securities. The modification ensures that, as smaller time intervals are consid-
ered, the calculated values of the derivative security canverge to the solution of the under-
lying differential equation. it can be used ta value any derivative security dependent an a
single state variable and can be extended to deal with many derivative security pricing
problems where there are several state variables. The paper illustrates the approach by
using it ta value bands and bond options under two different interest rate processes.

. Introduction

Twa of the most popular procedures for valuing derivative securities are the
lattice (or tree) approach and the finite difference approach. The lattice appraach
was suggested by Cox, Ross, and Rubinstein (1979} and has been extended by
Rendleman and Bartter (1979), Bayle (1986}, (1988), and Hull and White
(1988). The finite difference approach was suggested by Schwartz (1977) and
Brennan and Schwartz (1978), and has been extended by Courtadan (1982h).
Both approaches involve discrete approximations to the processes followed by
the underlying variables.

There are two alternative ways of implementing the finite difference ap-
proach. The first, known as the explicit finite difference method, relates the value
of the derivative security at time ¢ to three alternative values at time ¢+ Ar. The
second, known as the implicit finite difference method, relates the value of the
derivative security at time ¢ + At to three alternative values at time ¢. Brennan and
Schwartz (1978) show that the explicit finite difference method is equivalent to a
trinomial lattice approach. They also show that the implicit finite difference
method corresponds to a multinomial lattice approach where, in the limit, the
underlying variable can move from its value at time ¢ to an infinity of possible
values at time £ + Az.

Geski and Shastri (1985) provide an interesting comparison of different lat-
tice and finite difference approaches. They conclude that the explicit finite differ-

* Both authars, Faculty of Management, University of Taronto, Taronto, Ontario, Canada M5S
1V4. The authors would like to thank Phelim Boyle, Rabbie Tanes, an anonymous JFQA referee, and
JFQA Managing Editor Paul Malatesta.
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ence method, with logarithmic transformations, is the most efficient approach
when large numbers of stack aptions are being evaluated. The explicit finite dif-
ference method is also attractive for a number of other reasons. It is computation-
ally much simpler than the implicit method since it does not require the inversion
of matrices. It is conceprually simpler than the implicit method since it is, in
effect, nothing more than an application of the trinomial lattice approach. Fur-
thermare, as will be explained in Section II, it can avoid the need to specify some
boundary conditions. The method’s only disadvantage is that the numerical solu-
tion does not necessarily converge to the solution of the differential equation as
At tends to zero.

We modify the explicit finite difference method so that convergence of the
calculated values to the correct solution is ensured. Brennan and Schwartz (1978)
and Geske and Shastri (1985) show how a transformation of variables ensures
canvergence when stack options are being valued. The procedure in this paper
involves both a transformation of variables and a new branching process. It can
be used for the valuation of any derivative security dependent on a single state
variable and for the valuation of many derivative securities that are dependent on
several state variables. We illustrate the procedure by valuing bonds and bond
aptions when interest rates are governed by the Cox, Ingersoll, and Ross (1985b)
and the Brennan and Schwartz (1982) models.

The paper is organized as follows, Section II describes the explicit finite
difference methad and discusses its relation to lattice approaches. Section III
discusses issues associated with convergence and describes a modification of the
explicit finite difference method that ensures convergence in single state variable
moadels. Section IV applies the explicit finite difference method to valuing bonds
and bond aptions under the Cox, Ingersoll, and Ross {(19835b) model. Section V
discusses the application of explicit finite difference methods to problems with
two state variables. It values bonds and bond options using the Brennan and
Schwartz (1982) model. Conclusions are in Section VL.

Il.  The Explicit Finite Difference Method

Consider a derivative security, with price f, that depends on 2 single sto-
chastic variable, 9. Suppose that the stochastic process followed by 0 is

49 = w(8.00dr + a(9,1)8dz ,

where dz is 2 Wiener process. The variables p and o, which may be functions of
8 and ¢, are the instantaneous proportianal drift rate and volatility of .

If k is the market price of risk of 8, then, as shown by Garman (1976) and
Cox, Ingersoll, and Ross (1985a), f must satisfy the following differential equa-
tion,

2
B

=(pn—ro)0 + -0°c
a8 2 an?

where r is the risk-free interest rate. Both # and X may be functions of 6 and ¢.
When 8 is the price of a nondividend-paying stock, L — Ao = r and (1) reduces
to the well-known Black and Scholes (1973) differential equation.
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To implement the explicit finite difference method, a small time interval,
Az, and a small change in 9, AB, are chosen. A grid is then constructed for con-
sidering values of f when 8 is equal to

8.9, + AG,GO + 2A6,...,8

max *

and time is equal to
Lyt + Ar,rﬂ + 2AT,....T.

The parameters 65 and 8, are the smallest and largest values of 8 considered by
the model, ¢, is the current time, and T is the end of the life of the derivative
security.

We will denote 1, +iAt by 1;, 8, + jA8 by 6;, and the value of the derivative
security at the (£, /) point on the grid by fy- The partial derivatives of f with re-
spect to & at node (i — 1, §) are approximated as follows,

af - fi.j+1 _fi,j—L

2

@ 4o 2A9

3 a’f _ fet Pl %
a0’ Ap®

and the time derivative is approximated as

5‘_f — ij "ff—l,j

) at At ’

Substitting (2, (3), and (4) inta (1) gives

(5) Sy =g Syt el v gL
1 [_-amear jelo%ar
where a4 | = 1+rAI{_ 240 *3 A6 } )
a = L [1 - ejﬁazm} and
/T 1+rhs ae* |’
X . | l:(p-_)m-)ﬁjmt . lﬁfngtJ
141 T T4 rAr 248 2 Ad?

These equations form the basis of the explicit finite difference method.! They

! The equations for the implicit finite difference method are obtained in a similar way with the
approximatian

a;f - f;’+ l.p _J(;j
at At

being used in place of (4) and the partial derivatives being assumed ta apply to nade (i, /). The im-

plicit methad relatesf,, ; tof, ,_.f, andf; ., .
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relate the value f;_, ; of the derivative security at time ¢ to three alternative
values of the derivative security at time #,. The value of f at time T is known. The
value of f at time 7 can be obtained by using (5) repeatedly to work back from
time 7 to time rin steps of Az.?

Define
ej(j.L—)tO')At 1.2 3 Ar
- R s Sl Y s gy
pm—l IAH 27 A82 !
_ 12 Ae
p; = l—GjU—A-ﬁ-E, and

_ At 1.2 2 M
Pigrr = Q=R ogg + 300 o

so that Equation (5) becomes
1
(6) fovy = Tl Pri—fo PPy v B Sl

Itis easy to show thatp; ; |, p;, and p; ;. can be interpreted as the probabilities
of maving from 6;t0 8,_,, 8;, and 9, (, respectively, during time At, in a world
where the proportional drift rate of 8 is p—Aa. (p;;_(, p;, and p; ;,; sum to
unity and give a drift rate of (. — ho)@. Also, when terms of 0(Ar2) are ignored,
these values imply a variance rate of 0282.) When the p’s are interpreted in this
way, (6) gives the value of f at time ¢; as its expected value attime 1, , |, in a world
where the drift rate of 8 is p. — Ao, discounted to time ¢; at the risk-free rate of
mterest. This corresponds to the procedure suggested in Cox, Ingersoll, and Ross
({1985a}, Lemama 4) for valuing derivative securities.

We can conclude from this that the explicit finite difference method is
equivalent to a trinomial lattice approach. In Section III, this equivalence is used
to explain the conditions required to ensure convergence.

The explicit finite difference method has the advantage that it can require
the specification of fewer boundary conditions than the implicit methad. Con-
sider, for exampie, the valuation of a derivative security dependent on a stock
price 5. The implicit method requires the user to specify boundary conditions for
the derivative security as § —> 0 and § —» . The explicit method, when imple-
mented as a trinomial lattice, does not require these boundary conditions.

Partial differential equations can be classified as either boundary value prob-
tems (where a full set of boundary conditions must be specified) or initial value
problems {where only the value of the function at one particular time needs to be
specified). Many derivative security pricing problems, including most option
valuation problems, are initial value problems. Ames {(1977), p. 62} makes the
point that the explicit finite difference method is the best approach for initial
value problems. This is because errars are introduced by the extra boundary con-
ditions used in. the implicit finite difference method. Consider, for example, the
valuation of a derivative security dependent on a stock price §. Errors are intro-

? The presentation here assumes that 7 is 2 European-style denivative security that pays no in-
come. The arguiments easily can be extended to other situations.
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duced because the implicit method’s boundary condition as § — = is applied to a
finite value of S.

lll. The Proposed Procedure
A. The Transformation of Variables

As pointed out by Brennan and Schwartz (1978}, Geski and Shastri (1985),
and others, when @ is a stock price, it is efficient to use Lo# rather than 6 as the
underlying variable when finite difference methods are applied. This is because,
when o is constant, the instantaneous standard deviation of Ln6 is constant, i.e.,
the standard deviation of changes in La@ in a time interval At is independent of 4
andt.

Generalizing from this, it is always appropriate, when applying the explicit
finite difference methad, to define a new state variable 4(8,z) that has a constant
instantaneous standard deviation. From [to’s lemma, the process followed by ¢
in a risk-neutral world is

(7 db = q(8,5)dt + %aedz \
where
2
_ % - 9 1 228 d

We, therefore, wish to choose the variable ¢ sa that

od
B— = v,
9} 90y =Y
for some constant v,
The state variable ¢ can be modeled in the same way as 6. A grid is con-
structed for values of & equal to &y, &y, ..., &, where &; = by +jAd, and
the probabilities in (6) become

(10) Pij—1 = qud, 2 Ad}z ?
1 Ar
(11) pj_,l': ].'“Vm,and
L A 1A
(12) Pijvr = qud-, 2 A(bz‘

If 6 is a nondividend-paying stock with ¢ and r constant, p—ho = r and g is
constant. The lattice then corresponds to Bayle’s (1986} trinomial extension of
the Cox, Ross, and Rubinstein {1979) binomial lattice. Since g is constant, it has
the simplifying property that the probabilities are the same at all nodes (i.e.,
Pi.j-1» Pyj» and p; ;) are independent of j}. If the grid is selected so that ArAg?
= 1/, the Cox, Ross, and Rubinstein binomial lattice results.
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B. The Modification to the Branching Pracess

When using the explicit finite difference method, it is important to ensure
that as Ar and A¢ — 0, the estimated value of the derivative security converges
to its true value.? From a thearem in Ames ({1977}, p. 45), a sufficient condition
for convergence is that p; ;_y, p;;, and p; ;.| be positive as At and Ad — G. This
can be seen intuitively from the equivalence of the explicit finite difference
method and the trinomial lattice approach. From Equations (10), ¢(11), and (12},
this condition is satisfied if

2 Ar
13 pV—— < 1
(13) Ad?
and
14 v
asArAdp— 04

If ¢ is bounded, (13) and ¢14) can be satisfied and convergence can be en-
sured. The simplest procedure is to let Az and Ad approach 0 in such a way that
ArfAd? remains constant and less than 142, The desirability of keeping the ratio
of Ar to Ad? constant in order to ensure convergence also has been mentioned by
Brennan and Schwartz (1978) and by Geski and Shastri (1983).

There are some situations where ¢q is unbounded. As will be shown in Sec-
tion IV, one such situation occurs when € is an interest rate following a mean-
reverting process. The explicit finite difference method, as it has been described
so far, may not then converge. However, the method can be modified to over-
come this problem. Instead of insisting that we move from &, to one of ¢;_ |, &,
and ¢;, | in time At, we allow a movement from ¢, to one of ¢, _(, &y, and &, |,
where k is not necessarily equal to j. In Figure 1, (a)—(e) show the situations
wherek = j k=j+ 1, k=j—1,k<j—1,and k > j+ |, respectively.

In all cases, we choose & so that &, is the value of ¢ on the grid closest to
$;+gAr.3 The probabilities of &; moving to ¢y _, ¢, and &, are chosen to
make the first and second moments of the change in ¢ in the time interval At
correct in the limit as Ar — 0. The equations that must be satisfied are:

pa (k= 1A+ p kA +p. (Kt AG=ECh),
Pipo (= 1P MG  +p BADT +p, (k)P40 = A+ E(0)”, and

Pip 1t PP =1

3 Strictly speaking, we are interested in hoth stability and canvergence. A stable procedure is
ane where the results are relatively insensitive to round-off and other small camputational errors (See
Ames (L977), p. 28). In practice, the conditions for stability and convergence are the same in mast
derivative security pricing problems.

+ When ¢ = Ln® and p— Ac = r, these correspond to the canditions in Brennan and Schwartz
(1978).

5 In most situations & = j— 1, j, or j+ |. This means that the branching process corresponds to
Figure 1{a), I{b), ar L{c).
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byt b2 ¢; ¢,
dJlf ‘b; ¢;+T d)p-[
¢lf—] ¢'; ¢'; ¢;—2
(a) (b) (e
&, L. T
¢'k+1 ¢k
¢'k ¢'k—1
by @,
(d) (e}
FIGURE 1

Alternative Branching Procedures in the Explicit Finite Difference Method Designed to
Ensure that the Probabilities Associated with all Three Branches Remnain Positive

The normal situation is illustrated in (a). If the expected change in ¢, is sufficiently large and
positive, it may be necessary to Use the biranching processes illustrated in {(B) or {€). The
branching processes illustrated in (¢} and {d) may be required far negative expected
changesin 4,

where E($) = jAd + E(8d) is the expected value of ¢ — by, at the end of the time
interval,, Az. The solution ta these equations is

2 2
@ pas - 3[Fer- aenER EOE, 2

|2y HE@G) E@) VA

(16) by =1 - Ad fvE; v , and
E(b)Y VA
A7) Py = %[kz—k+(l—2k)%%+~ﬁ2)—l+ -‘;ﬂ .

The procedure suggested in this section can be used to deal with jumps in 6.
Suppose for example that 8 is the price of a security and a dividend at time 7 is
expected to cause 0 to jump down by 8(0). For the time interval in which the
dividend occurs, we can switch from Figure 1{a) to Figure 1(d). We define & in
Figure 1(d) so that &, is the value of 4 on the grid closest to ¢(8, — 5(6;),1).6

& Hull and White (1988} and Hull (1989 suggest that knawn dividends should be dealt with by
defining 4 as the security price less the present vatue of the known income. This has same thearetical
appea). If the dollar amount of future incame 1s known, the price of the secunty logically should be
divided inta two camponents: a nonstochastic campanent that will be used ta pay the known divi-
dend, and a residual stochastic component. The approach suggested here may be more appropriate
wher long time periods are considered (e.g., in the valuation of warrants ar canvertible stock).
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Finally, it is worth noting that the explicit finite difference method provides
one degree of freedom: the choice of v2A#Ad2. We will denote this by w. One
constraint on w s that it should always be possible to find a & such that p; ,_ |, py,
and p; , , ( are positive. It can be shown that this constraint implies that 0.25 < w
< 0.75. If ¢ i1s small, an examination of the errors in the way in which the differ-
ential equation is approximated suggests that a sensible value for w is 4.7 We find
that this works well.

V. Application to a One State Variable Interest Rate Model

A number of authors have suggested that an appropriate process for the
short-term interest rate 1s

40 = a(b—8)dt + c8%dz ,

where a, b, ¢, and « are constants, and 0 is the short-term interest rate, In Vasi-
cek (1977), ¢ = 0; in Cox, Ingersoll, and Ross {1983b), & = ¥; in Courtadon
(1982a), @ = 1. The modified version of the explicit finite difference method can
be used for any vaiue of . We will illustrate its use for o = %.

From (9), the appropriate transformation of 8 is

b= 6.
In a risk-neutral world,

d8 = [a(b—8) — ucOldr + ¢ fBdz,

where 1,8 is the market price of risk. This means that
db = qdt + vdz,

where v = ¢/2, and

1, .2
B b | 08
q = [a(bwﬁ)—ucﬂ]£+7—2
af
2
=%~%(a+uc)

Since ¢ can take on any positive value, ¢ is not bounded. It follows that the
standard explicit finite difference method may not converge. However, the varia-
tion on the standard method described in Section I can be used.

Define

_4ab—c2‘ 1
@ = —— iy = §(a+uc),

T If g = 0, the errors are 0(As1) rather than 0(4f) when VIAHAD?T = ¥ If g is constant (as is the
case when 9 15 a stock price), it is efficient to define anew “zere ¢** variable ¥,

=4 —q.
When this variable is modeled using p, ., = %, p; = %, and p, ;.| = K, the errars are {AR).
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As suggested in Section III, we choose vIA#AD? = 4. It is easy to show k = |

when
@ Ar 1
= [E‘“id’]iﬁ <7

L
2

Assuming o and «, are positive, this condition reduces to8

d)min “{“(b“{‘d)max’

B+ JB2+4alaz

where ¢ . = 2a, '
B+ ”324-40‘.[0‘.2
‘bmax = 20:2 » and
A
p=od

2Ar

Using the approach outlined in Section 111, the values of ¢ considered on the
grid for the explicit finite difference method are ¢g, &, ... &, where by, is the
largest multiple of Ad less than ¢, &, = g +jAd, and # is the smallest inte-
ger such that ¢, = &,,. (It is assumed that Ad is also chosen so that some
multiple of Ad equals the current value of &.) Note that, as Az and Ad tend t0 0,
b, approaches 0 and ¢, increases.

When 1 < j = n—1, the explicit finite difference method (trinomial lattice)
approach aperates in the usual way. The probabilities of moving from ditod;_y,
d;and ¢, in time interval Az are given by (15), (16), and (17). In this example,
when the value &, is reached, the three possible values that might be obtained
after a time interval At are dy, ¢, and &,. The probabilities pg,, py,, and py, are
calculated from Equations (15), (16), and (17), withj = O and & = 1. Similarly,
when the value ¢, is reached, the three possible values of & after a time interval
of At has elapsed are ¢, 5, §, |, and ¢,,. The probabilities p,, , 5, p, ., and
B, of maving to these values are calculated from Equations (15), (16), and (17)
with j = nand k = n—1. Clearly, it is unnecessary to consider values of ¢ less
than <, or greater than &, since these can never be reached.

The modified explicit finjte difference method can be used to value any in-
terest rate contingent claim. Table | shows the results of using the procedure to
value a discount bond with face value of $100. Define B, as the value of the bond
at the (f,j) node, and assume that the bond matures at time £, + mAz. We know
that B,,; = 100 for all j. Since the short-term interest rate is $2, the value of the
sbond prior to maturity can be calculated using

(18) B:}' = l+¢I2At [pj‘j— IB{+ l.i—1 + pjjBi+ [.f + pj,j+ lBr'+ 1.j+1] !
i

4 Note that if ey < 0, the risk-adjusted drift rate of the short-term interest rate is always positive.
This would imply infinite discount rates in a risk-neutral world. If o, << 0, the effective ¢, is 2ero; if
B? + 4 o, < 0, there is no effective ¢

max*
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forj=1,2...0—1,

|
B, =——"—7Ip. B + p. B, + po.B. , and
(19) i0 1+¢§Ax[ 007+ 1,0 01764 1,1 02 x+l,2]
(QO)Bm = l+d)iﬂt[pn'n_28i+l’n_2 +pn‘n—lBi+l,n—l +lﬂ'rmBHl,n] )

Table 1 compares the calculated bond price with the analytic solution given by
Cox, Ingersoll, and Ross (1985b) for the interest rate pracess parameters

a = 0.4,
b =201,
¢ = 0.06, and
u=20.

These parameters produce an interest rate model where the short-term interest
rate reverts to 10 percent. The instantaneous volatility of the short rate is about
19 percent when the short-term rate is 10 percent. The parameter values chosen
are, therefore, not unreasonable. Table 1 shows that the numerical solution is
very close to the analytic solution.

TABLE 1

Bond Prices Given by the Explicit Finite Difference Methad far the Cox, Ingersall, and Ross
Model in Which the Interest Rate Obeys the Process dr = a(b— ndt+cjr dz

Bond Current Short-Term Interest Rate
Maturity
{Years) 6% 8% 10% 12% 14%
5 66.31 63.53 60.86 58.30 05,85
(66.24) (63.45) (60.78) (58.23) (66.78)
10 40,92 38.98 37.14 35.38 33.71
(40.83) (38.89) (37.05) (35.29) (33.62)
18 25.02 23.82 22.68 21.59 20.55
(24.94) (23.74) (22.59) (21.51) (20.47)
20 15.28 14.54 13.85 13.18 12.65
(15.21) (14.48) (13.78) (13.11) (12.48)

Note: The market price of interest rate risk is ). True prices given by the analytic solution
are shown in parentheses. Face value of bond = $100, At = 0.05years, a = 0.4, bt = 0.1,
¢ =006 andu=0.

Table 2 shows the results of using the method to value American call op-
tions on a hond paying a coupon at a continutous rate of y = $10 per unit time.
First, the bond price at each node of the lattice was calculated using a similar
approach fo that described above.? The option price was then evaluated by work-
ing back through the lattice from the end of the option’s life and applying the

? To adjust for coupons, the expressions in the square brackets in Equations (18}, {19), and (20)
were each increased by yAzr.



Hull and White 97

boundary conditions for an American call option.!¢ From Table 2, we see that the
procedure converges fairly rapidiy.

TABLE 2

Price of a 5-Year American Cail Option en a 10-Year Bond (100 Face Value) Using the Cox,
ingersoll, and Ross Interest Hate Model in Which the Interest Rate Obeys the Pracess
dr = alb—ridt+cirdz

Exercise Price

At

(Years) S0 95 160 105 110
0.500 10.34 6.09 2.69 0.47 0.02
0.250 10.36 6.21 2.48 0.44 0.01
0.100 10.47 6.13 2.54 0.45 0.01
0.050 10.51 6.15 2.54 0.48 0.01
0.025 10.52 .14 253 0.45 0.0
0.010 10.52 6.14 283 .45 0.01

Note: The market price of interest rate risk is v/r The current shaort-tarm interest rate is 10
percent per annum and the bond pays a coupon at the rate of $10 per annum.
The current price ofthe bond i3 100.39, a =04, b =01, ¢ = 006 and u = 0.

V. Dealing with More Than One State Variable

To illustrate how the ideas presented above can be extended to deal with
several state variables, consider the two state variable case. Suppose the vari-
ables are &, and &,. These must first be transformed to two new variables ¢, and
&5, so that the instantanecus standard deviation of each is constant. Assume that
the volatility of 9; depends only on 4; and ¢ i = 1, 2). The correct transforma-
tions can then be determined in the way indicated in Section III. The processes
for ¢ and &, have the form

dd, g,dr + k,dz, , and

db, = gydt + kydz

Il

a3t

where &; and k, are constants, and ¢, and ¢, are defined analogously to ¢ in (8).

There is likely ta be an instantaneous correlation p between the Wiener pro-
cesses dz, and dz,. Assume this is constant. The next stage is to transform vari-
ables again to eliminate the correlation. This is achieved by defining new vari-
ables s, and 4, as follows,

= [kzd;’l + kl‘bz] , and
by = [k — Kk,
These follow the processes
db, = (kyq,+k q,)di + kik, [ITTF p)dz, , and
dby = (kyq,~kay)de + kiky T 03ds,

1729

where the Wiener processes dz, and dz, are uncorrelated.

1 Suppose C, B, and X are the call price, the bond price, and the exercise price, respectively. At
the end of the aptian’s life, € = max(f — X ,0). At each node, the boundary condition € = B~ X is
imposed.,
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The passible unconditional movements of W, in the time interval At, to-
gether with their associated probabilities, are chosen in the same way as they are
for ¢ in Section II1. The same is true for i,. Unbounded drift rates are dealt with
using the same appraach as that described in Section III. The variables s, and s,
are, therefore, modeled using a two-dimensional lattice with nine branches ema-
nating from each node. The probability of any given point being reached is the
product of the unconditional probabilities associated with the corresponding
movements in g and ys,.

Tables 3 and 4 show results from the application of the explicit finite differ-
ence method to the Brennan-Schwartz two state variable interest rate model. In
this maodel,

dr = a(£—r)dt + o rdz , and

d¢ = w(fr.)dt + a,fdz, ,
where £ is the yield on a consel bond, r is the instantaneous risk-free interest
rate, and a, o, and o, are constants. The market price of short-term interest rate
risk, A, and the instantaneous correlation, p, between r and # also are assumed to
be constant. Table 3 shows bond prices, while Table 4 shows European call
prices. The rates of convergence are encouragingly fast.

TABLE 3

Prices for a 3-Year Face Value 8-Percent Continuous Goupan Band using the Brennan-
Schwartz Model

Current Short-Term Rate, r

At{Years) 6% 8% 10%
a2 102.93 9B8.02 9336
a1 102 93 98.06 93.43
0.067 102.93 98.07 93.45
0.05 10293 98.07 93 .46
0.04 102,893 98.08 93.47

Note: The interest rates obey the processes or = alf—rat+ardz and df =

nir £ et + asfdz,, with a = 0.1 g, = 0.1, 5, = 0.03. The market price of short-term interest
riskis — 0.4, the carrelation between dz, and dz,is 0.2, and the initial long-term rate £ = 10
percent,

TABLE 4
Price of a European Call Option on a 3-Year, 8-Percent Coupon Bond Using the Brennan-
Schwartz Model
Call Price
Current Short-Term Rate, r

At (Years) 6% 8% 10%
Q.1 317 0.60 0.015
Q.067 317 0.60 0.014
0.05 3.17 0.59 0.014
0.04 3.18 (.59 0.014
Note: The interest rates obey the processes or = af-ndi+ardz and df =

wi{r £ 0 dt+a,fdzy, witha = 0.1, a; = 0.1, o = 0.03. The market price of short-term interest
rate risk is —0.4, the correlation between ¢z, and ¢z, is 0.2, and the initial long-term rate
¢ = 10 percent. The option has 1 year to maturity and an exercise price of 98. The
corresponding baond prices are givenin Table 3.
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VL.  Summary and Conclusions

The explicit finite difference method is both easier to implement and con-
ceptually simpler than the implicit method. The explicit method’s disadvantage
is that it does not necessarily converge. This paper provides a systematic proce-
dure for implementing a modified version of the method in such a way that con-
vergence is ensured. This should malee the method attractive to both practitioners
and researchers.

Geske and Shastri ((1985), Table 2) found that the explicit finite difference
method, when implemented in the most efficient way for valuing stock options,
uses about 60 percent as much CPU time as the implicit method. We have ap-
plied both the explicit and implicit methods to a variety of different problems
using an IBM AT Persanal Computer. Our results are similar to those of Geske
and Shastri. We find that the explicit method uses between 40 and 70 percent as
much time as the implicit method to provide the same level of accuracy. One
reason for the extra efficiency of the explicit method is that most derivative secu-
rity pricing problems are initial value prablems, nor boundary value problems.
Errors are introduced by the redundant boundary conditions in implicit methods.
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