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A Lattice Framework for Option Pricing with Two State
Vatiables

Phelim P. Boyle*

Abstract

A procedure is developed for the valuation of options when there are two underlying state
variables. The approach involves an extension of the lattice binomial approach developed
by Cox, Ross, and Rubinstein to value options on a single asset. Details are given on how
the jump probabilities and jump amplitudes may be obtained when there are two state
variables. This procedure can be used to price any contingent claim whose payoff is a
piece-wise linear function of two underlying state variables, provided these twa variables
have a bivariate lognormal distcibution. The accuracy of the method is illustrated by valu-
ing options on the maximum and minimum of two assets and comparing the cesults for
cases in which an exact solution has been obtained for European options. One advantage
of the lattice approach is that it handles the early exercise feature of American options. In
addition, it should be possible to use this approach to value a number of financial instru-
ments that have been created in recent years.

(. Introduction

The option pricing framework has proved extremely useful for the analysis
of many aspects of corporate finance and investrment practice, The volume and
variety of options traded on world exchanges has expanded enormously since
Black and Scholes developed their seminal approach. Corporations in many
countries now offer increasingly sophisticated instruments to the investing pub-
lic. Budd (1983) describes a number of these new types of securities. The valua-
tion of these securities poses challenging problems since they may involve a
complex package of imbedded options whase payoffs depend on several state
variables.

Options involving two state variables have been discussed by Stulz (1982),
Johnson (1981), Schwartz (1982), and Boyle and Kirzner (1985). These papers
concentrated on the valuation of European options and were able to develop ana-
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author is grateful io Don Haley for superb research assistance and ta the Natural Sciences and Engi-
neering Research Council of Canada, the Centre for Accounting Research and Education at the Uni-
versity of Waterloo, and the Financial Research Foundation of Canada for support. He is also grateful
to John Hull, Gordon Willmot, and Alan White for helpful discussions and to Jeremy Envine and
Mark Rubinstein for useful comments. An earlier version of this paper was presented at the 1986
European Finance Association Meeting in Dublin and the author thanks Marshall Blume for construc-
tive comments. The author also acknowledges helpful suggestions from an anonymaus JFOA referee.
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Iytic or quasi-analytic solutions involving the bivariate notmal density function.
American optians with payoffs depending on two state variables satisfy the same
basic generalization of the Black-Scholes equation as European options. How-
ever, the boundary conditions are more complex in the case of American options
to accommadate the possibility of early exercise. It is possible to solve the equa-
tion for American options in the case of more than one state variable using a
finite difference approach. With two or more state variables, the computations
quickly become quite expensive in the case of the finite difference method. In
addition, there are significant start-up tests to develop an efficient computing al-
gorithm.

In the case of the valuation of American options when there is only one state
variable, the lattice binomial approach developed by Cox, Ross, and Rubinstein
(1979) has a strong intuitive appeal. It is extremely simple to implement. The
basic idea is to replace the continuous distribution of stock prices by a two-point
discrete distribution over successively smaller time intervals. Convergence to the
true option value is obtained by increasing the number of steps. The terminal
distribution of the stock price is developed using a binomial lattice. This method
has won widespread acceptance in the case of a single state variable. Geske and
Shastri {1985) outline its advantages and drawbacks as well as those of a number
of other approximation techniques in the case of options with a single state vari-
able.

The basic purpose of the present paper is to develop an extension of the
Cox, Ross, Rubinstein (CRR) lattice binomial algorithm to handle the sitnation
in which the payoff from the option depends on more than one state variable.
Specifically, we consider the case in which the option is a function of two under-
lying state variables although it is possible that the procedure can be extended to
sitvations involving a higher number of state variables. As a prelude to the de-
velopment of a lattice approach in the case of two state variables, it proved con-
venjent to modify the CRR approach in the case of one state variable. This modi-
fication consisted of replacing the two-point jump process used by CRR with a
three-jump process. When this was done, we obtained a more efficient algorithm
for the valuation of options when there is just one state variable; a result that may
be of some interest in its own right.

Section II of the paper describes the modification of the CRR approach in
the case of a single state variable. Section III develops a lattice type approach for
the valuation of options whose payoff depends on two state variables. It tums out
that a five-point jump process enables us to develop an appropriate lattice in three
dimensions (two asset dimensions and one time dimension). We discuss the de-
termination of the jump probabilities and jump amplitudes and are able to draw
on some of the results of Section II in the development.

Numerical results are given in Section IV. These include cases in which
exact solutions (available from Stulz (1982)), are used to illustrate the accuracy
of the procedure. We also derive values for American put options on the mini-
mum of two assets and illustrate the value of the early exercise provision.

The final section contains some concluding comments.
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Il Modification of the Two State Approach for a Single State
Variable

In this section, we develop a modification of the CRR lattice binomial ap-
proach for option valvation in the case of a single state variable. The modifica-
tion introduced will be helpful in generalizing the approach to two state vari-
ables. One of the features of the CRR approach is that by assuming that the stock
price can move only either upward or downward, the relationship between the
hedging argument and the mathematical development is especially clear. Their
approach provides a powerful demonstration that options can be priced by dis-
counting their expected value in a risk-neutral world. However, if we know the
distributional assumptions and are assured that a risk-neutral valuation procedure
is appropriate, then other types of discrete approximation can be used. We can
regard the option valuation problem as a problem in numerical analysis and re-
place the continuous distribution of stock prices by a suitable discrete process as
long as the discrete distribution tends to the appropriate limit.! In this section, we
use a three-jump process instead of the two-jump process used in the CRR
method.

Three-jump models have been used before in the literature to analyze option
valuation problems. Stapleton and Subrahmanyan (1984} discussed a three-jump
model, but they did not examine its numerical efficiency or solve for the jump
probabilities. Parkinson (1977) employed a three-jump madel to value the Amer-
ican put, but his approach seems difficult to generalize to situations involving
mote than one state variable. Brennan and Schwartz (1978) related the coeffi-
cients of a transformed Black-Scholes equation to the probabilities of a three-
jump process.

To proceed with our development, let us consider an asset (§) with a lognor-
mal distribution of returns. Over a small time interval this distribution is approxi-
mated by a three-paint jump process in such a way that the expected return on the
asset is the riskless rate, and the variance of the discrete distribution is equal to
the variance of the corresponding lognormal distribution. It is convenient to em-
ploy the following notation:

T = time to option maturity (in years),
X = exercise price of option,
r = the continuously compounded yearly interest rate,
a? = the variance of the rate of return on the underlying asset (yearly),
n = the number of time steps into which the interval of length T is divided,
h = Tin: length of one time step,
Su = asset value after an up jump,
$ = asset value after a horizontal jump,
Sd = asset value after a down jump.

¢ Proofs that the approximating discrete distribution tends to the appropriate continuous distribu-
tion for both the one-state-variable case and the two-state-variable case are available fram the author.
The authar thanks the referee for affirming the importance of this convergence.
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For the three-jump process considered in this section, the continuous-return
distribution is approximated by the following discrete distribution:

Nature af Jump Probability Asset Price
Up 2 Su
Harizantal S s
Oown f Sd

It is convenient to impose the condition that ud = 1. Our task is to find suitable
values for the probabilities p,, p,, and p, and the stretch parameter i in terms of
the known variables. This can be achieved by first imposing three conditions to
salve for the probabilities in terms of 1 and the other variables. Then we show
how a suitable value of u can be obtained.

The three conditions are:

(i} the probabilities sum to one,

(ii} the mean of the discrete distribution ; SM, is equal to the mean of the
continuous lognormal distribution

Sexp(rk) = SM, and

(iii) the variance of the discrete distribution : $?V, is equal to the variance of
the continuous distribution

§*M* [exp(a’h)—1] = s*v.

Later on, when we specify the value of the stretch parameter u, we insist
that each of the probabilities must be positive. The above three conditions are,

(1) Pty oy =1,
h
2) pSe + p,S + Py = SM

Sﬂ

(3) pl(SIHZ_SiME) +p2(SI_S2M1) +p3(—2—52M2) _ S2V.
I

It is convenient to divide the second equation by $ and the third by S 2. Then
the first equation can be used to remove p, from the last two equations. This
yields

@) py(u—1) +p3(L—t—l) =M-1,

(5) p(u*-1) +p3(i1— 1) =V+M 1.
U
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These equations can be solved to give explicit expressions for p, and p, as
fallows,

B (V+M2—M)u - M-1

© b1 (a-D(~1) ’
(VM M) — M -1)
)] Py = 7
=D —1)
®) Py =1-p —py

It is convenient to use the following notation,
9 p = fuMV),

(10) p, = g(uMV) .

Noate that these equations imply that & is not equal to 1. This is reasonable since u
corresponds to an up jump, and it will exceed 1.

So far, u has not been specified. In general, there will be a range of values
of u that produce reasonable values for the probabilities. Recall that the CRR
paper used

(11} u = exp[ofr] .

If we use this value of u, then for many realistic parameter values p, will turn out
to be negative. For example, suppose o = 0.20,r = 0.1, T = 1.0, and n = 20.
With these parameter values, Equation (11) implies that # = 1.045736, and the
probabilities given by (6), (7), and (8) become p, = 0.553859, p, =
—0.018440, and p; = 0.464581. The value of u given by Equation (11} is too
low to produce a positive value for p, given the parameters of this example.? To
rectify this, define « as

(12) u = exp[rafh],

where X is greater than 1. By using different values for A, a range of values of u
is obtained, and there is an interval within this range that produces acceptable
values for all the probabilities and p, in particular. Table | displays the values of
1 and the corresponding probabilities for a range of values of A,

In order to determine the most effective value of X to use, a number of
aptions were evaluated over a range of parameter values. Best results were ob-
tained when the probabilities were roughly equal. Although the primary aim in

2 Recall that for the CRR two-jump approximation, the variance of the discrete distribution is
biased, whereas this is not the case far the three-jump process considered here, The stretch factor
‘4" will not be the same for both approximations to give meaningful results.
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TABLE 1

Jump Amplitudes and Jump Probabilities
c=02r=01,T=10n=20

RS u 2 P 2

1.00 1.0457 0.5539 0.4646 —0.0184
1.10 1.0504 0.4610 0.3798 0.1592
1.20 1.0551 0.3900 0.3156 0.2943
1.30 1.0599 0.3346 0.2659 0.3995
1.40 1.0646 0.2904 0.2266 0.4829
1.50 1.0694 0.2547 0.1951 0.5502
1.60 1.0742 0.2253 0.1694 0.6053
1.70 1.0790 0.2008 0.1482 0.6510
1.80 1.0838 0.1802 0.1305 0.6892
1.90 1.0887 0.1627 0.1156 07216
200 1.0936 0.1477 0.1030 0.7493

developing the three-jump lattice approach to option valuation in the case of one
state variable was to pave the way for extensions to two or more underlying as-
sets, it may be of interest to summarize the resnlts obtained by this algorithm
with those of the two-jump approach used by CRR. For a range of parameter
values, we found that the accuracy of the three-jump method with 5 time inter-
vals was comparable to that of the CRR method with 20 time intervals.?

lll. A Lattice Model for Valuation of Options on Two
Underlying Assets

In this section, we develop a valuation algorithm for the pricing of options
when there are two underlying assets. The method used to compute the jump
probabilities within the lattice is outlined, and a procedure for selecting the jump
amplitudes is explained. The essence of the idea is to derive a generalization of
the method developed in the previous section.

It is assumed that the joint density of the two underlying assets is a bivariate
lognormal distribution. When we implement the risk-neutral valuation proce-
dure, it is implied that both assets earn the riskless rate. To specify the distribu-
tion, we need the vaniance-covariance matrix as well. The approximating dis-
crete distribution has the same expected values and variance-covariance values as
the discrete distribution. This means that one needs at least five degrees of free-
dom in constructing the discrete approximating distribution. In addition, we need
to ensure that the jump probabilities add up to one, which gives another condition
to be satisfied. A five-point jump process can be constructed to satisfy the various
requirements and can be used to generate a two X one-dimensional lattice snit-
able for valuing the options we are considering.

It is convenient to rely on the basic notation used in the previous section.
We use the subscript 1 to denote the first asset and the subscript 2 to denote the
second asset:

3 Far space reasons, summary comparison tables are not included in this paper, but are available
from the author on request.
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Asset 1 Asgset 2
Current value 8, 5,
Variance rate af of

We assume that the option matures after time 7 and that its exercise price is X
We also asume that the time interval [0, 7] is divided into n equal steps each of
length h. As before, the continuously compounded riskless rate of interest is r per
annum. Suppose we consider a time interval of length A. The means and vari-
ances of the two assets at the end of this interval are obtained from the properties
of the lognormal distribution and are:

Asset 1 Asgset 2

Mean SM, SM,

Variance 52, 83V,
where
(13) M, = exp[rh],

gl 2
(14) V= = T;["’""(“f k)-1]
i =1,2.

The expected value of the product of the two variables S| and S, can be
written down using the properties of the joint lognormal distribution

5(5152) SlsleMz[exP(PC’l“zh)}
= §,5,R.

(15)

From this last equation, we can derive the covariance of the two assets. Thus, we
have the means and variance-covariance matrix of the bivariate lognormal distri-
bution of asset values at the end of the time internal . To replace this distribution
with a discrete distribution, we ensure that the first and second moments (includ-
ing the covariance term) of the approximating discrete distribution are equal to
those of the continuous distribution.

In order to obtain an efficient algorithm, we found that a five-point jump
process was the most suitable. Given that the pair of assets has current value (5,
§,), there are five distinct outcomes for the proposed jump process. We can
summarize the outcomes of the jump process as follows:

Event Prabability of Event Value of Asset given that Event has Occurred
Asset 1 Asset 2

) Lo/ S, Sati

Ey Pa Sty S,dy

& Fa 5,4, Spdy

£, By 8,4y Syt

& P 5 S,

Thus, in analogy to the earlier case, i, represents the stretch factor for asset one,
and u, represents the stretch factor for asset two. We impose the conditions

uld1= 1, uzdzz 1.
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Assume the process starts when the asset values are §, and §,. We envisage a
three-dimensional representation with time along the vertical axis. The asset
price pair can take one of five values after time h depending on which of £, E,,
E,, E,, or E5 has occurred. These five points correspond to points in $—S, space
lying in a plane directly above the point of origin. The first four points lie at the
corners of the rectangle and the final point lies in the center of the rectangle
vertically above the point of origin. As this process is repeated, we generate a
three-dimensional lattice structure resembling an inverted pyramid. The terminal
distribution of the pair of assets is represented by the topmost of a layered series
of rectangles in which the center of each rectangle lies vertically above the point
of origin.

To evaluate the probabilities and the stretch parameters, it is convenient to
proceed as we did in the previous section: first, find the probabilities in terms of
ty, iy, and the other variables. By equating the mean of the discrete distribution
to the mean of the continuous distribution, we obtain two equations

(16) (P1+pz)81”1 + P58 + (ps+p4)sld1 = 5M,

(1h (p1+p4)S2u2 + psS, + (,02+p3)S2d2 = S§,M, .
Two more equations result from equating the variances

as (py+ ) (516~ 5100) + py(s3- Sar)
+pytp)(Sidi-siM)) = SV,

171’

(P +4) (S35 — M) + py(S; - S34))

19
9 +(py+ p3)(sid§—S§M§) =5V, .

Since the probabilities sum to 1 we also have
20 p[+p2+p3+p4+p5=l'

Now we can use the results of the previous section to simplify the analysis.
Note that there is a strong correspondence between the three equations (1), (2),
and (3) and the triplet (20), (16), and (18} and also with the triplet (20}, (17), and
(19). In fact, if we regard (p, +p,), (p4+p,), and pg as new probabilities, we
can solve for these new probabilities. The explicit expressions are given by
Equations (6), (7}, and (8) with appropriate medifications. In the same way, we
can solve Equations (20), (17), and (19) for the “‘new’’ probabilities (p, +p.),
(p2+p4), and ps. Notice that this solution procedure corresponds to the projec-



Boyle 9

tioh of the two-variate distribution onto the unconditional distribution of a single
variate. Using this procedure, we obtain the following results

@1) P+ py = flu M V) =1,
(22) py+py = g(u M V) = g,
23) P+ 0y = FugMy V) = f,
(24) py+py = g(u My V,) = g,

In view of Equation (20), we have two distinct expressions for ps so that the
following consistency equation needs to be satisified

(25) hte =h+s
This gives a relationship between u, and u, that must be satisfied.
The final equation is obtained from relating the expected value of the prod-

uct of the two assets under the continuous distribution and the approximating
diserete distribution. Using Equation (15), this gives

Q6)  (puyuy+pyudy+pyd dy+ pydiuy +pg)S\ Sy = RSS, .
Dividing across by 5,5, and eliminating p; yields
pl(ulul—l) + pz(“1d2_ l) + pl(dldz_ 1) + p4(d1u2—1) =R-1.

If we substitute for d and 4, and use Equations (21), (22), (23), and (24), we
can use this last equation to obtain the following expression for p,

u i, (R—1) —fl(u:;'— 1) —fl(ui— 1) + (f2+g2)(ulu2— 1) .
(- 1)(15-1)

Armed with this expression for p,, we can find p,, p4, and p, using Equations
(21), (22), (23), and (24). The results are

fi (uf— l)ui +f2(ui— l) - (f2+32)(ulu2—l) - u u,(R—1)

@2n p =

(28) Py = (- 1)(d-1) ,
g DA i) ) )
(29) P, (u?—l)(ﬂi—l) )
(30) py = A= 1) + H(9-1)u = (h+8) (1) — wuR-1) ‘

(u} - 1){15-1)



10 Journal of Finarcial and Quantitative Analysis

To illustrate the computation of these probabilities in a specific case, let us
assume the following parameters: 0, = 0.2, ¢, = 025, r = 0.1,n = 20,T =
1.0,and p = 0.5. Let

u, = exp [(1.1)0] \/H]

s0 that for these parameter values

u, = 1.05042358 .

In order to ensure consistency, Equation {25) must be satisfied. Equation (25)
gives a relationship between u, and u,. In order to solve for u,, we use Newton’s
method and take the initial value of u, to be:

, = exp [(l.])czﬁ]
1.06342185.

i

It turns out that the value of u, that satisfies Equation (25} is close to this starting
value. When u, = 1.0632918, Equation (25) is satisfied. Armed with the values
of u and u,, we can proceed to compute the probabilities. These are given for a
range of values of ) in Table 2. Probabilities for the particular («,, ¥,;) combina-
tion just discussed are displayed in the second line of Table 2. Note from Table 2
that the sum of the probabilities p, and p, corresponds to the probability of an
upward jump in the case of the single asset given by p, in Table 1. There is a
similar relationship between the sum (p,+p,) from Table 2 and the probability
of a down jump in Table 1. This illustrates the relationship between the bivariate
distribution for § and §, and the univariate unconditional distribution for §, and
the univariate unconditional distribution for 3.

TABLE 2

Jump Amplitudes and Jump Probabilities for 5-Jump Process
a=02,a,=025r=01,n=20,T=1,p=05

A Ly Uy T Pa P Ay Ps

1.00 1.0457 1.0574 0.4201 .1337 0.3448 0.1198 —-0.0184
1.10 1.0504 1.0633 0.3489 1111 0.2814 0.0984 0.1592
1.20 1.0551 1.0692 0.2962 0.0938 0.2334 0.0822 0.2943
1.30 1.05499 1.0752 0.2543 0.0803 0.1963 0.0696 0.3995
1.40 1.0646 1.0812 0.2208 0.0696 0.1670 0.0597 0.4829
1.50 1.0694 1.0873 0.1937 0.0609 (.1434 0.0517 0.5502
1.60 1.0742 1.0934 Q1715 0.0538 0.1243 0.0451 0.6053
1.70 1.0790 1.08985 0.1529 0.0479 0.1085 0.0387 0.6510
1.80 1.0838 1.10566 0.1373 0.0429 0.0953 0.0352 0.68982
1.80 1.0887 1.1118 0.1240 0.0387 0.0842 0.0314 .7216
2.00 1.05936 1.1180 0.1126 0.0351 0.0748 0.0282 0.7483

IV.  Numerical Examples

In this section, we present numerical examples to illustrate the operation lof
the method developed in the previous section. Both Johnson (1981) and Stulz
(1982) have derived a number of exact results for European options when there
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aré two underlying assets. These results can be used to check the accuracy of the
approach. In particular, expressions exist for a European call option on the maxi-
mum of two assets and for a European put option on the minimum of two assets.
Johnson (1983) has obtained a generalization of these results for the case involy-
ing a European call option on the maximurn or minimum of several assets. His
results could be used as benchmarks to check extensions of our method to situa-
tions involving three or more assets.

The advantage of the present approach is that it permits early exercise and
thus can be used to value American options and, in particular, American put
options. Our approach can also be maodified to handle dividends and other pay-
outs.

For our numerical solutions, we assume §|, = 40, 5, = 40, a, = 0.20, ¢,
= 0.30, p = 0.5, r = 5-percent per annum effective = 0.048790 continuously,
T = 7 months = 0.5833333 years, and exercise prices = 33, 40, 45. We dis-
play in Table 3 the results for three types of options: European call options on the
maximum of the two assets; European put options on the minimum of the two
assets; and American put options on the minimum of two assets. Since we are
assuming no dividend payments, the value of the European call on the maximum
of the two assets will be (identical to} the value of an American call option with
the same specifications. The agreement between the numbers obtained using the
lattice approximation and the accurate values is quite good, especially when 50
time steps are used. In this case, the maximum difference is 0.005 and the accu-
racy would be adequate for most applications. For this set of parameter values,
the American put is not much more valuable than its European counterpart.

TABLE 3

Diffarent Types of Options Invalving Two Assets:
Comparison of Lattice Approach of this Paper with Accurate Results

Number of Steps
Accurale
Exercise Price 10 24 50 Value
European Call ot the Maximum of the Two Assets
35 9.404 9414 9.419 9.420
40 5.466 5477 5.483 5.488
45 2a17 2.790 2792 2795
Eurapean Put on the Minimum of the Two Assets
35 1.425 1.394 1.392 1.387
40 3.778 3.790 3.795 3798
45 7.475 7.493 7.499 7.500
American Put on the Minimum of the Two Assets
35 1.450 1.423 1.423
40 3870 3.885 3.892
45 7.645 7.674 7.689

V. Concluding Comments

We have seen how the lattice approach to option valuation that has been
developed for options on a single state variable can be extended to handle situa-
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tions in which there are two state variables. This means that American options in
which there is a possibility of early exercise can be handled using this technique.
It is suggested that approximation procedures of this type may be useful in the
valuation of complex securities involving options that depend on two state vari-
ables. Thus, for example, the procedure developed here could be used in the
pricing of secured debt when the underlying firm consists of two risky assets with
a joint lognormal distribution. Recently, Stulz and Johnson (1985) have exam-
ined this problem and used a numerical approach to solve the resulting partial
differential equation. Another area in which this new valuation technique might
be useful is in the valuation of options with stochastic volatilities because, in this
case, there are two stochastic state variables. Recently, a number of papers have
appeared on the valuation of such options (c.f., Wiggins (1985), Hull and White
(1985}, Johnson and Shanno (1985)). To date, the techniques used to derive op-
tion values have involved the direct solution of the partial differential equation
(Wiggins (1985)) or Monte-Carlo approaches (Johnson and Shanno (1985) and
Hull and White (1985)). The method suggested in this paper may provide another
approach.
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