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Lattice Models for Pricing American
Interest Rate Claims

ANLONG LI, PETER RITCHKEN, and
L. SANKARASUBRAMANIAN*

ABSTRACT

This article establishes efficient lattice algorithms for pricing American interest-
sensitive claims in the Heath, Jarrow, and Morton. paradigm, under the assumptiaon
that the volatility structure of forward rates is restricted to a class that permits a
Markovian representation of the term structure. The class of wolatilities that
permits this representation is quite large and imposes no severe restrictions on the
structure for the spot rate volatility. The algorithm exploits the Markovian property
of the term structure and permits the efficient computation of all types of interest
rate claims. Specific examples are provided.

THIS ARTICLE DEVELOPS A FAMILY of models for pricing American options on
interest rate derivatives. The models belong to the class of Heath, Jarrow,
and Morton (HJM) (1992) models in that their only requirements are the
initial yield ecurve and the volatility structure for all forward rates. Without
severely restricting the structure of these volatilities, HIM showed that the
evolution of the term structure could depend on the entire path taken by the
term structure since it was initialized. Since the evolution of the term
structure may not be Markovian with respect to a finite dimensioned state
apace, difficulties arise in implementing maodels for pricing interest rate
derivatives. For example, if simple lattice procedures are used, then the paths
may not reconnect and information may have to be manipulated over an
exploding tree.! This article investigates ways to resolve these difficulties
when additional assumptions are imposed on the permissible class of volatil-
ity structures.

Under very specific volatility restrictions, the path dependence can be
completely removed. In this case the instantaneous spot rate can be shown to
be the appropriate single state variable that contains all information relevant

*Li is at the First National Bank of Chicago. Ritchken is at the Weatherhead School of
Management, Case Western Reserve University. Sankarasubramanian is at the Debt and Equity
Markets Group, Merrill Lynch. We thank the participants of the Fourth Annuval Derivative
Securities Conference, held at Cornell University in 1994, for helpful comments. We also
appreciate the helpful suggestions of an ananymous referee and the editor, René Stule.

'The path dependence is made apparent in a related article by HIM (1990) where they use a
bionomial approximation to provide an alternative derivation of their results. Due to the path
dependence, the lattice grows exponentially with the number of time periods.
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for pricing derivatives.? For this class of volatilities, closed form solutions are
available for European contracts, and efficient computational schemes exist
for American contracts.® Unfortunately, under the HJM paradigm, the total
removal of the path dependence can only be achieved if the volatility struc-
ture for forward rates belongs to certain deterministic classes. All these
classes imply that interest rates have normal distributions, a property that
has been criticized, not only because interest rates can go negative with
positive probability, but also because there is little empirical support for
models of spot interest rates having variances that are independent of the
level of rates.*

Recently, Ritchken and Sankarasubramanian (RS) (1995) have identified
necessary and sufficient conditions on volatility structures that do not com-
pletely remove the path dependence, but rather capture it by a single
sufficient statistic® For volatility structures in their class, the evolution of
the term structure can be made Markovian with respect to two state vari-
ables. That is, given these twa variables, the entire term structure can be
recovered. The class of volatilities that permit this representation is quite
large, and includes, as a special case, the deterministic volatility structures
that eliminate all forms of path dependence. Interestingly, the class imposes
no particular restrictions on the structure of the spot rate volatility, and
hence permits volatilities to fluctuate according to the level of the spot rate.
To date, however, under the HIM approach, no analytical models of claims
have been obtained for any nondeterministic structure of volatilities, includ-
ing those in the RS class. Simulation procedures have been used to establish
prices of European claims, and the analysis of American claims has largely
been restricted to pricing short term claims, where implementing exploding
lattice procedures may be computationally feasible.

To our knowledge, there are no efficient HJM algorithms available that can
accurately price most types of long-term American cantracts, even those as
simple as long term semiannual coupon callable bonds, when the volatility
structure of forward rates is not deterministic. This article develops efficient

2Hull and White (1993¢} and Caverhill (1994) provide necessary and sufficient conditions en
the volatility structures that ensure the spot rate is the sole-state variable. The most popular
models ion this class are referred to as generalized Vasicek models. Examples include
Jamshidian (1989), Hull and White (1998), and HJM (1992).

ElEzvramples of analytical solutions include Jamshidian (19932), Amin and Jarrow (1991), HIM
(1492), and Ritchken and Sankarasubramanian (1992, 1993).

*For example, see Chan, Karolyi, Longstaff and Sanders (1992) and Flesaker (1992).

The sufficiency condition was alsa independently derived by Cheyette (1992), who applied the
resulting Markovian model of the term structure to price mortgages.

fHeath et al. (1993) have used simple nonrecombining lattices. Unfartunately, the convergence
behavior of these algorithms have not been investigated since the partition of the time period
cannot be made very fine. Indeed, lattices with as few as 20 time periods would require searching
millions of nodes. For time horizons less than 5 years, Amin and Bodurtha (1995) study discrete
time path dependent lattices, and conclude 10 partitions may suffice for shorter term contracts.
Amin and Morton {1994) use seven partitions in their empirical study on alternative volatility
structures for short term contracts.
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lattice procedures for pricing European and American claims for the class of
volatility structures developed by RS. The resulting algorithms permit all
types of claims to be efficiently computed, regardless of their maturity.

The article proceeds as follows. In Section I the basic results of HJM as
well as RS are reviewed, with special attention placed on implementation
issues. Section II then establishes a lattice approximation for implementing
the RS model. Section IIT provides results that illustrate the convergence of
the prices on the lattice. Section IV compares our HJM models to those
developed under alternative paradigms. In particular we compare our models
to the variants of the Black, Derman, and Toy (1990) models aoften used by
professional trading houses. Section V summarizes the article.

I. Path Dependence and Volatility Structures

Let f(t,T) be the forward rate at date ¢ for instantaneous and riskless
borrowing ot lending at date T. The evolution of forward rates of every
maturity T is given by a diffusion process of the form

df(e, T) = p,(t, T)dt + op(¢,T) dw(2), O, T)given T > ¢t. (1)

Here p(¢,T) and o/(¢,T) are the drift and valatility parameters that could
depend on the level of the term structure itself The instantaneous spot
interest rate, r(#) is given hy f(¢, ¢). By definition, the price at date ¢ of a
pure discount bond with maturity date, 7', is given by

P(.t,T) =e_fxrf(f,s)ds‘ (2)

The volatility function, o,(¢, T, holds the key to the pricing analysis, and
can be chosen quite arhitrarily. In fact, its selection completely determines
the price of all claims, since for each choice, the drift term is uniquely
determined under the equivalent martingale measure by the no arbitrage
condition:

18, T) = 0,6, T) [ 0,0t ) ds. @)
¢

Let g{0) represent the date 0 value of an European claim having a terminal
payout at date s that ig fully determined by yields drawn from the yield-curve
at that time. HIM have shown that the fair price of the claim can he
represented by

g(0) = Eyfefirtrdig(5)]. (4)

The expectation is computed under the pracess described by equation (1) with
the drift term restriction imposed in equation (3).

In general, forward rates of all maturities cannot be represented as fune-
tions of a small number of state variables that have evolutions governed by
Markovian processes. RS identify the class of volatility structures that permit
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the term structure to be represented by a two-state Markovian model. This
class is characterized by

a(t,T) = a,t,t)k(2,T) (5)
with
k(t,T) = e /7 utnrds,

Here o4(¢,t) is the volatility of the spot interest rate at date ¢, which could
depend on the entire set of term structures to that date and «(x) is some
exogeneously provided deterministic funetion.

If the volatility structure is of the form in equation (5), then bond prices at
date ¢ can be expressed in terms of price information at date 0, the spot rate
at date ¢, »(t), and a second statistic, ¢(¢), which represents the accumulated
variance for the forward rate up to date ¢. Specifically,

P(O:T) 13,
P = | —_ - —Bee, THrie)— fO, th— 385, Tipls) 8
(¢, T} (P(O,t) )e (6a)
where
B(t,T) = ka(r,u)du (6b)
£
and

(1) = jo‘aﬁ(u,t)du

- frgfz(u,u)ki(u,t)du‘ (6¢)
a

Moreover, the price of an European interest rate claim, as given by equation
(4), ean be computed as

2(0) = B, [ i®dtg(s)] )
where the expectation is taken under the risk-neutralized process
dr(t) = p(r, é,t)dt + o,(¢, £) dw(2) (8a)
do(t) = (o7t 1) - 2K(t)¢(z)) dt (8b)
with
wlr o, t) = «()[F0,8) — r(£}] + $(2) + %f(o,t). (8¢}

The class of volatility structures described by equation (5) ig quite large
since no explicit restrictions are imposed, apart from boundedness, on the
structure of spot rate volatilities, ¢,(¢,¢). In particular, the volatility could
depend on both state variables, r(¢), and ¢(¢). That is,

a;(t,t) = al(r(t), d(t), t). Q)



Lattice Models for Pricing American Interest Rate Claims 723

As an example, cansider the family of models generated by assuming that the
volatility of the spot rate has constant elasticity,

ar(t,t) =olr(v)l”; v= 0, (10}

Interest rate models with this specification have been studied quite exten-
sively in financial economics. For example, with ¥ = 0, we obtain the general-
ized Vasicek (1977) model, while with v = 0.5, we obtain the square root
structure considered by Cox, Ingersoll, and Ross (1985). More recently, Chan
et al. (1992) test a wide variety of models resulting from this spot rate
volatility specification and the additional requirement that the drift term of
the spot rate process be linear in the level of the spot rate. They conclude that
inelastic models with ¥ set to zero lead to term structure dynamics that
appear inconsistent with ohserved data, and that models of spot rate hbehavior
should permit the volatility to fluctuate according ta the level of the rate. The
family of RS models generated with the apot rate volatility assumption (9)
share this property with the models tested by Chan et al. (1992).

In the RS family of interest rate models, the volatilities of all forward rates,
a{t,T), are related to the volatility of the spot rate, o(¢,¢) through the
exogenously specified parameter set, {«(x)lx = 0}. This set can be made as
parsimenious as desired. In particular, if we set «{(z} = x, we abtain models
that capture the notion that distant forward rates are less volatile than near
forward rates. Cursory empirical evidence reported by Heath et al. (1993),
however, indicates that the term structure of volatilities of forward rates may
actually be humped, first increasing and then decreasing. To avoid the
pricing errors that would result from an impraperly specified initial volatility
structure, many models, including those of Black, Derman, and Toy (1990),
Hull and White (1990) and Black and Karasinski (1991) initialize not only the
term structure but also the initial set of volatilities for all forward rates to a
given set of values. In the RS class of models, this is achieved by appropri-
ately choesing the set of x(-)s. For example, if «{x) were negative for amall
values of x and positive for large values, this would lead to the humped
structure ohserved by Heath ef ol. (1993).

Of course the volatility restriction in equation (5) does preclude certain
volatility structures that may have some intuitive appeal. For example, while
the restriction does permit forward rate volatilities to fluctuate according to
the level of any single spot rate, it does not permit volatilities of different
forward rates to fluctuate according to different rates. Hence, a model in
which volatilities vary according to the level of their forward rates would not
be permissible.’

In the next section we describe a lattice procedure that can be used to
efficiently implement the HIM paradigm for the RS volatility structures.

"Such wolatility structures have been considered hy Amin and Morton (1994).
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II. Lattice Approximation of the Two-State Variable Process

The lattice approach follows a two step procedure. First, we transform the
interest rate process in equation (8) to a form that has constant volatility.
Second, we establish a path-reconnecting lattice approximation for the trans-
formed process. To achieve the first step, we follow Nelson and Ramaswamy
(1990) and consider the following transformation:

Y(e) =

1
ar(t 11
STreo, 0, @ (1)
where, as before, o[ r(t), ¢(¢), t] denotes the volatility of the spot rate at date
¢t conditional on the values of r(¢) and ¢(¢). Further, let (¢} = h{¥{t)) be the
inverse function. Then

dY(t) = m(Y, ¢, t) dt + dw(t) (12a)
dp(t) = (a?{r(t), p(t), t] — 2x(t) Pp(t)) dt (12b)
where
a¥Y{(¢t) ays) , Yt )
m(Y,$,t) = < + w(r, d,t) P —o [#(2), ¢(2), z] PavR

To illusirate the transform, first consider a square root model, where ¥ = 0.5
in equation (10} and k() = «. Then, for r(¢) > 0, Y(t) = 2vr(¢} /o, and the
specific structures for equations (12a) and (12b} are given by

“ay))?

o2 r(t), 6(1), ] = i—[f-l]n
1 4U(¢>, 1
m(Y,fi),t)mY(t){( = —[Y()}) 2]

where

d
v, t) =F0,£) + —f(O £) + f_(l

As a second example, consider the proportional mode'l where v = 1. Then,
for r(t) > 0, Y(¢) = In[r(2) /o] and the specific structure for equation (12) is

a®lr(t), ¢(t), t] = ge?o VD
1 1
m(Ys ¢)t) = = U(Y) ¢)t) "' “0'2]
o 2

where

d
Y, p,t) = {K[f(O,t) — e YO] + $(¢) + ng(o,t)}eﬂﬂ’(:x

Once the transformed process with constant volatility is obtained, a lattice
approximation can be established. As usual, this procedure begins by parti-
tioning the interval of interest into subintervals of length At Assume that at
the beginning of some time increment the approximating variables are y“
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and ¢° In the next time increment the variables move to either (27, ¢*7) or
to (y27, ¢~ ) where,

¥ =92 + (J + 1WAL > y* + m(y®, ¢, £)ALt > y* + (J — IWAL =y,

Here, oJ is an integer chosen so that the two terms, y*~ and y**, bracket the
expected value of the interest rate in the next time increment.® Choosing J
go that the expected value brackets the two successor points for the state
vatriables ensures that a probability value for the jump can be found that is
strictly between 0 and 1. Let p = p(4?%, ¢*) be the probabhility. Then,

ply® = y%) + (L - p)(y* —y°) = m(y®, $°, )AL,
or

m(y®, ¢°, L)AL + (y* —y*7)
(y"=9°7) '
This method ensures that locally the means of the interest rates match the
true drift and the variances of the approximated process converge to the true
variance as the partition is refined.
Since the process for ¢ is locally deterministic (see equation (8h)), the
values ¢** and ¢“ are equal and fully determined by the current state

variables (y%, ¢°). Let ¢** represent their common value. From equations
{8b) and (9) we have

Pt =% = $p** = $° + [ ([ y°], @%,t) — 2x(t)}P°]AL.

The value, ¢**, is completely determined from its predecessor, (y%, ¢%).
Hence, after n steps in the lattice, the total number of distinct ¢ values at
each node will equal the total number of unique paths leading to that node.
Rather than keep track of all these values, we identify the two paths from the
origin to each node that yields the maximum and minimum values for the
state variable, and then partition the resulting interval into a finite number
of points at which information will be computed. Let ¢¢ and ¢° represent the
maximum and minimum values of the ¢ variable at this node.® Assume the
interval [¢?, ¢°] is partitioned into m equidistant points with ¢%(k), k& =
1,2,..., m representing the kth point and

9= A1) < ¢%(2) < - < $%m) = ¢°.

Figure 1 provides an illustration of a lattice constructed over the first three
periods. In this example the initial term structure is flat at 4 percent
throughout and the volatility structure is of the form in equation (58) with

at,T) = a[r()] e T0, (14)

(13)

8Formally, the integer o ia chosen as follows. Let Z = int{ m{y*, ¢°, £WAt ). Then

J = 82, if Z is even,;
T 1512l + 1 otherwise.

where & = Sign{Z).
3Clearly, these two values will vary for each node, and only on the edges of the lattice will the
two values be equal.
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r = 7.288475

$ar = 2930747

r = 5.942988

@1y = L.569168

r = 4.,88561
r - sessa U} = Le41a8a
Pl1) = 0.64 $i2) = 2.286207
${3) = 2.930747
r = 40
oo ${1] = 1.043405
¢ = a0 (21 = 1.306286
i E— () = 1.569168
r = 3.21449
= 3,274
rz3ne @i} = 1.289239
Py = 0.64 $2) = 1.17820
P = 2146401
r o= 2.68128

$i1) = 1.043405

r = 2.195246

$i1) = 1.289239

Figure 1. Construction of the lattice. The initial term structure is flat at 4 percent. The
volatility structure is given by equation (14) with « = 2 percent, o = 20 percent, and y = 1.0.
The time partition is one year, and other than along the edges, three partitions are used for the
atate variable, ¢. The lattice shawsa the interest rate at each node, together with the ¢ variahles.
The interest rate values are in percentage units, while the ¢ values are in percentage squared
units. The lattice ia constructed in a faorward direction using the transform in equation (12). As
an example, in the first period, r = 0.04 and hence y = In(r}/o = —16.094 With At =1,
¥+ =y¢ + 1= —15094. Hence r* = exp{lo y*} = 4.88561 percent. The initial value of ¢ is 0.
Using equation {12h) leads to an updated value of ¢, of 0.64. Since ¢ is locally deterministic, this
value is used in the up and in the down node. In this example, JJ = 1 at all nodes. That is, there
are no multiple jumps. In a three-period example, the maximum number of paths to any node is
3. All ¢(2) values on the lattice are obtained hy taking the average of the smallest value, $(1),
and the largest value, ¢(3). [n this example, after 3 periods there are 8 distinet states.

In this example, o = 20 percent, « = 2 percent, y = 1, the time increment is
one year, and the number of ¢ values at each node is restricted to no more
than three. Figure 1 shows the evolution of the spot interest rate, r on the
lattice as well as all the ¢ values at each node.

Once the lattice is established, claims can be priced using backward
recursion. In particular, at the expiration date, for each (¢, ¢$°) location, the
boundary values can be computed by first constructing the term structure
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using equation (6a) and then establishing the exercise value. Let g,(y*, ¢°)
be the value of the claim in the nth period conditional on the state variahles
being (¥4, ¢%). Now consider the general backward recursion. Assume the
values for the claim have been determined for all states in the lattice at the
(i + D)st period, and that claim prices in period i are to be computed. Given
the state is {y“, ¢*), we know the successor nodes and the associated proba-
bilities. The value of the claim at the ith time period, g,(¥%, ¢*) say, is given
by

gy, 0% =[pg, . (9% &) + (L — plg,. (3%, d*")]e 774 (15)

Actually, since ¢** is completely determined by (3%, ¢°)}, the values of the
claims at the successor nodes may not be available. However, by construction,
prices of the claims in the next time period at nodes (y°*, ¢3*) and (y°*, ¢°*)
will be available where ¢** < ¢** < ¢¢* In this case the price of the claim at
(y2*, ¢°*) can he obtained by linearly interpolating between the prices
i {y*, ¢, ua*) and g, (", $2*). Similarly, linear interpolation may be
necessary to obtain the prices at (y2~, ¢ ).1° If the claim is American, then
the above recursion has to be modified. In particular, the price given in
equation (15) has to be compared to the exercise value af the claim, with the
higher of the two values recorded.

Figure 2 provides a step-by-step illustration of the pricing process for a
three-year European call aption that gives the haolder the right to purchase a
five-year discount. bond for the current forward price. The values of the
underlying hond for each set of state variables in the third year are pre-
sented. These values are computed using equation (6a). The boundary values
for the claim are shown below the bond prices. Once the boundary values are
obtained at the expiration date, equation (15} is used recursively to eventu-
ally obtain the theoretical price. At each stage of the valuation, the probabil-
ity values for up-jumps are computed using equation (13) and are shown in
parentheses in Figure 2.

Of course, the algorithm converges to the continuous time limit only when
the time and ¢ partitions are made arbitrarily fine. The actual rate of
convergence for a variety of interest rate claims are examined next.

ITII. Convergence Properties

The computational effort inveolved in pricing a stock option on a binomial
lattice grows linearly with the number of time partitions. Our algorithm
shares this property. In particular, if the number of ¢ values at each node is
m, then our algorithm requires approximately m times more effort than the
usual bionomial stock option model with the same number of time partitions.

YThe idea of carrying a vector at each nade of the lattice and using linear interpolation is not
new. Examples include Hull and White (1993a} and Ritchken, Sankarasuhramanian, and Vijh
(1993}, who price path-dependent eontracts on underlying Geometric Wiener processes.
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Bond = 6%9,782.46

gy = 0.0
g = o0
(0.440090)
Bond = 78,349.01
gl = 0.0
(1) = 732.985 Bond = 78,291.86
(0.844211) g2 = a0

Bond = T8,234.76
gy = 0.0

g() = 1,4185

(04565211
g1} = 1,997.86 2{(2} = 1,40L64
(0,450} {0.458164)
£03) = 1,304,853
(0.459807
Bond = £4,623.40
20) = 2,750.32
£01) = 3,181.01 Bond = 84,582.36
{0.4459557} £(2} = 2,709.28
Bond = 84,541.33
B3 = 2,668.25

g = 4,917.098
(0.42431984)

Bond = 89,084.31
8 = 121122

Figure 2, Construection of option prices. Cansider an option that after 3 years provides the
holder with the right to buy a five year discount band with face value, $100,000. The strike price
ia set at the current forward price of $81,873.07. The probabilities of up-jumps from each state
are computed using equaiton (13} and are shown in parentheses. Given r and ¢, the value of y
can be computed (y = In(r) /o), and the formula is then used. For example, the probability of a
first jump up is 0.450. At the expiration date, the value of the underlying bond in each state is
shown. The price of the hond is computed using equation (8h). The terminal value of the eall
option on the bond is shown helow the hond price. Given the probabilities at each node, the value
of the claim in each state can then be computed using equation (15). The fair value of the option
on this lattice is $1,997 86.
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In contrast, the computational effort involved in pricing claims using the
general implementation of HIM doubles with the number of partitions.'*

To illustrate the convergence behavior of prices produced by the medels, we
consider three applications. The first involves pricing short-dated claims on
long-term bonds. The second invoelves pricing long-dated claims, namely
long-term callable coupon bonds. The third application illustrates how com-
plex interest rate exotics can be priced. In particular, we examine adjustable
rate preferred stocks, which are complex interest rate derivatives, offered in
perpetuity, and have dividends that are reset periodically at a fixed spread
abave, at, or below the highest of several points on the Treasury yield curve.

A. Short-Dated Options on Long-Term Bonds

Consider the problem of pricing a one-year at-the-money American put
option on a 30-year discount bond. In this application, our algorithm only
requires the lattice to be built over the lifetime of the claim, rather than aver
the lifetime of the underlying instrument. In particular, since the entire term
structure can be constructed at the end of the year, the prices of the
long-term bond in each state can he obtained, and the boundary values for
the option can therefore easily be computed.'

The initial term structure was assumed flat at 5 percent, and the volatility
structure for forward rates was taken to be of the form in equation (14).
Figure 3 shows the convergence rate for at-the-money American put prices
for different time partitions over the year and for different ¢ partitions, for
x = 2 percent, ¥ = 1.0, and o = 10 percent.

Notice that as the number of @-values increases, the option prices converge
as the time partition increases. Figure 3 shows the convergence rate when
the number of ¢ values at each node is 2, 5, 10, 25, 50, 100, and 200. The
results are almost identical for all ¢ partitions that exceed 25. With 25
partitions, the number of computations for our algerithm is about 25 times
larger than those required in a binomial stock option model with the same
number of time partitions. Moreover, with regard to the time partitions,
convergence is quite rapid, with 50 time partitions providing sufficient accu-
racy. The analysis for in- and out-the-money American put options yielded
similar convergence properties.

Since no analytical solution exists for American put options, the true
limiting price cannot. be measured, and so to confirm that the lattice prices do
converge to the true value, we compare the results of European put prices
computed on the lattice to those generated by computer simulation with

" Mare formally, the complexity of the bionomial stock option model with » time steps is of the
order n%. The computational complexity of our algorithm is also n?, while the general HIM
implementation has arder 27,

2 Many term structure constrained madels do not have this property and require a lattice to be
built over the lifetime of the underlying security. As a result, the partitions often have to be quite
large or time varying. Examples include Black, Derman, and Toy (1990), Black and Karasinski
(1991), and Hull and White (1293b).
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123 +

1.2288 4

1.2296 4

1.2294 +

1.2892 +

1.229 +

Put Price
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Figure 3. Convergence of American put prices. Figure 3 shows the rate of convergence of
the price af a one year at the money American put option price. The initial term structure is flat
at 5 percent, and the volatility structure is given by equation (14} with « = 2 percent, g = 10
percent, and y = 1. The face value of the underlying hond is $100, due in 31 years' time. The
strike price of $21.3130 is set at the forward price for the bond in one vear's time. The graph
indicates the very rapid convergence of prices as the ¢-partition is refined. Indeed, for 25 ar more
values of ¢ at each node, the resulting prices are indistinguishable. ¢ represents the accumu-
lated variance of the forward rate. The rate of convergence for different time partitions is also
seen ta he very rapid.
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Table I

Sensitivity of Callable Bond Prices to the Partition for the &

Variable
The volatility structure is given by equation (14}, with vy = 1, kx = 2 percent, and « = 10 percent
per vear. The theoretical noncallable price represents the price of the Southern Bell Bond if it
were not callable. The theoretical price for the actual bond is shown in the third column. The
final column reparts the theoretical value of the call feature. Notice that as the partition of ¢
values increases, the prices converge. ¢ represents the accumulated variance of the forward rate.
A partition of 25-values appears satisfactory.

Number of Naneallable Price Callable Price Option Value
¢ Values (% of Par) (% of Par} (% of Par)

2 104.55 101.44 311

i) 104.55 101.49 3.06

19 104.55 101.50 3.05

25 104 55 101.51 3.04

50 104.55 101.51 3.04

100 104.55 10151 3.04
200 104.55 101.51 3.04

control variates. For extremely large simulations, the differences in prices
produced by the two methods are negligible.’

B. Long-Dated Derivatives

Long-term options on bhonds most commonly arise as call features embed-
ded in callable coupon honds, To illustrate the pricing process, consider the
Southern Bell 8 3 /4 percent bond due on 9/1 /2024, The bond has a maturity
of 30 years and is callable, with a call schedule that begins at 104.20 in the
first year, and then declines to 100 after 20 years. The term structure is
initialized to the structure that existed on August 31, 1994. The volatility
structure is taken to be of the form in equation (14) with x = 2 percent,
¥ =1, and o = 10 percent. The 30-year time period ig broken into 360 time
periods. Table 1 shows the convergence of prices allowing for different num-
hers of ¢ values at each node. As with short-term derivatives, convergence is
quite rapid and is accomplished with about 25 ¢ values.

This problem could not be solved using the usual path-dependent imple-
mentation of the HIM model. Specifically, with just twe partitions a year, the
path dependent lattice would have 2% terminal nodes, making computation
impossible. To date, the only efficient HIM models that can solve this
problem require deterministic volatility structures. The example illustrates
how long-dated contracts can be efficiently priced in the HIM paradigm,
when volatilities are not deterministic.

?For a discussion on the simulation approach for this prablem see Ritchken and Sankarasub-
ramanian {1895).
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Table Il shows the sensitivity of the Southern Bell callable bond price to
the volatility parameter, o. For ¢ near 11 percent per year, the theoretical
price aligns up with the actual market price for that date.

C. Adjustable Rate Preferred Stocks

Adjustable rate preferred stocks (ARPS) are complex interest rate deriva-
tives that typically pay quarterly dividends, the size of which are linked to
the best performing of the 8-month Treasury rate, the 10-year Treasury rate,
and the 30-year Treasury rate. [Jsually a lifetime cap and floor are provided,
as well as callable features. The contracts are usually offered in perpetuity.
As an example, consider the Bank of America Corporation’s adjustable rate
preferred stock. The issue consists of 6 million shares at $50 each. The shares
are currently callable at par. The payments at each quarter are linked to the
Treasury curve as follows:

Max[3 mo, 10 yr, Avg [18, 19, 20, 21, 22 yrs]] — 200 basis points.

The payment has a floor of 6.5 percent and a cap of 14.5 percent. The yield
curve i initialized to the structure that existed on August 31, 1994. The.
volatility structure for this meodel is given by equation (14) with « =2
percent, ¢ = 10 percent, and y = 1.

To value such a claim calls for a lattice that has quarterly time steps at the
very least. Further, at each node on the lattice, we must know the yield curve
for at least the next 22 years. To value this perpetuity, we construct a
100-year quarterly lattice. At the end of 100 years, the value of the ARP is
determined at each node under the assumption that the yield curve from then

Tahle II

Sensitivity of Prices to the Volatility
The table shawa the sengitivity of the price of the Southern Bell callable coupon bond to changes
in. the volatility parameter. The second column indicates the theoretical price of the bond if it
were not callable. The value remains eonstant regardless of the velatility parameter since the
initial term structure is fixed. The value of the call feature is isolated in the last column. The
actual price of thiz hond is 101.47 percent of par. This value implies a volatility close to 12
percent.

Valatility Bond Price Band Price
(Annual %) {Noncallable) {Callable} Option Price
¢] 104.55 104.02 0.53
25 104.55 104.02 .53
59 1034.55 103.50 105
7.5 104.55 10251 2.04
10.0 104.55 141.51 3.04
12.5 104.55 100.18 4.37
15.4 104.55 99.12 5.43
17.5 104.55 93.14 6.41

20.0 104.55 97.44 7.11
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Tahle III

Sensitivity of ARPS Prices to the Partition for the ¢ Variable
The volatility structure is given hy equation (14), with y = 1, « = 2 percent, and & = 10 percent
per year. The Noncallahle Price represents the theoretical price of the Bank of America
adjustable rate preferred stock if it were not callable. The thearetical price for the actual contract
is shown in the third column. The final column reports the theoretical value of the all feature.
Notice that as the partition of ¢ wvalues increases, the prices converge. ¢ represents the
accumulated variance of the forward rate. A partitian of 25-values appears satisfactory.

Number of Noncallable Price Callable Price Option Value
¢ Valueg (% of Par) (% af Par) {% of Par)

2 92.28 $41.54 874

5 92,13 41.50 0.73

10 92.18 41.45 0.71

25 92.09 91.40 .69

5¢ 92.08 91.39 0.69

100 92.08 91.39 0.69
200 92.08 91.39 0.69

on is deterministic. Given the boundary values, the usual backward recursion
could be used to price the preferred.* Table III shows the convergence of
prices for different partition sizes for ¢. The results again are similar to the
other examples, in that 25 partitions appear to be sufficient. The sensitivity
of prices to changes in the volatility parameter are shown in Table IV. The
actual price of the ARP is 92.3 percent of par, a value that implies a volatility
of about 12 percent.

Owing to the frequency of payouts over the lifetime of the security, it would
be extremely difficult to value this ARP using the path-dependent implemen-
tation of HJM.

In all the above examples, the convergence rate of prices is quite rapid and
obtains with about 25 ¢ values. In practice then, the computational effort for
our implementation of the HJM models, when the volatility structure belongs
to the RS class, is approximately 25 times greater than that required from a
binomial stock option model with the same number of time partitions.

IV. Comparison with Alternative Models

The reconnecting lattice models developed here can be adapted to price
claims when spot rates have quite general volatility structures as given in
equation (5). However, when spot rate volatilities are specified as in equation
(10) with y = 1, our lattice provides an alternative to the Black, Derman, and
Toy (BDT) (1990)) model. Both lattices have the ability to produce prices
consistent with an observable term structure. In addition, both allow the spot

" The sensitivity of the price to changes in the date beyond which we take the term structure
to be canditianally deterministic was investigated. The prices remain virtually unchanged far
periods beyond 50 years,
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Table IV

Sensitivity of Prices to Volatility Parameter
The table shows the sensitivity of the price of the Bank of America Corporation adjustable rate
preferred stock to changes in the volatility parameter. The second column indicates the theareti-
cal price of the preferred if it did not have a call feature. The value of the call feature is isalated
in the last calumn. The actual price of this ARP is 92.37 percent of par. This value implies a
volatility of abhout 12 percent.

Volatility ARP ARFP
{Annual %) (Noncallable} (Callable) Optian Price
0 85.70 85.70 0.00
25 86.62 86.61 .01
50 8815 £88.10 {.05
75 90.09 89.81 .28
10.0 92.09 91.40 0.69
12.5 93.61 92.55 1.06
15.0 96.35 94 07 2.28
17.5 947.48 94.60 2.89
20.0 4896 95.08 3288

rate volatility to be proporticnal to the level of the spot interest rate. The
BDT lattice, however, assumes that the spot interest rate is the sole state
variable that determines prices. In contrast, our lattice derives the appropri-
ate state variables under the HIM paradigm. Moreover, in our paradigm, the
structure of forward rate volatilities can be maintained over time. This is in
contrast to the BDT lattice where the structure for future forward rate
volatilities is not well understood, and indeed is fully determined by the
specification of the initial term structure. That is, the structure of the future
volatilities of forward rates cannot be decoupled from the initial specification
of the term structure. Actually, in the BDT paradigm, the future level of the
spot rate volatility, as well as future forward rate volatilities, can only be
curtailed if more initial conditions are specified and more time varying
functions introduced into the dynamies.'

For relatively simple contracts, such as aptions on specific bonds, the BDT
medels are quite efficient, Indeed, once the lattice of spot interest rates are
computed, the algorithm is as rapid as the binomial stock aption model, with
an equivalent number of time steps. However, if the BDT model is used to
price the one-year option on a thirty-vear bond, the lattice would have to
extend out 30 years, and the overall computational requirements may exceed
that. of our algarithm.

When the underlying contract is relatively complex and, at each node of the
lattice, requires information from across the term structure, then the compu-
tational effort of BDT might equal or exceed the effort required in our lattice

5a good example of this approach is Hull and White (1993b}. In their analysis, three
time-varying functions are required in the stochastic process of the state variables in order to fit
a variety of required initial conditions.
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procedures. As an example, if the Bank of America’s adjustable rate preferred
stock is to be priced using BDT, then, with the underlying lattice constructed
over quarters, af least 22 x 4 = 88 values of the term structure need to be
carried at each node, This is in contrast to our lattice, where given the two
state variables, the relevant points on the term structure can be immediately
computed. In addition, the construction of the BDT lattice would have to go
out at least 22 years further in time relative to our model. For this example,
their overall computational requirements will exceed those of our algorithm,

In the examples presented in this article, other than the initial term
structure, all that is required is estimates of two parameters, namely the
volatility term, &, and the mean reversion function x(t¢). For «{¢) = «, the
two parameters can be chosen so as to match the prices of two specific caps or
80 as to minimize some measure of error produced in calibrating the madel to
a term structure of cap prices or initial forward rate volatilities. Of course our
lattice can match more initial conditions by requiring the parameter « to be
time varying. Clearly, the greater the number of parameters introduced into
the analysis, the greater the number of prices that can be fitted. As usual, the
cost of an overparameterized model usually takes the form of poor ocut-of-sam-
ple performance. Hence, if the model is to be used for hedging, where the
intertemporal dynamics are important, fewer parameters may be desirable.
Since the dynamics of the assumed state variable in the BDT paradigm are
completely determined by the initial conditions, it is not possible to signifi-
cantly reduce the number of parameters. It is therefore not surprising that
the hedging performance of such models has been found to be quite poor. It
remains for future empirical work to establish whether the RS models with
simple volatility structures as in equation (14) perform well. In particular,
the stability of estimates of x and & over time may provide good indicators of
the viability of this approach.

V. Conclusion

This article establishes a lattice for pricing European and American inter-
est rate claims using the HJM paradigm. To avoid the path dependence that
arises in their general approach, attention is focused on a class of volatilities
for forward rates that made the dynamics of the term structure Markovian
with respect to two state variables. The class of volatilities that accomplishes
this is large and imposes no severe restrictions on the volatility of spot rates.
The performance of the algorithm is investigated. For European options, the
rate of convergence to the limiting price is established, where the limiting
price is obtained using computer simulation. The convergence behavior for
American contracts is also examined. The examples illustrate the rapid rate
of convergence of prices that can be obtained for HIM madels in spite of the
fact that volatilities are not deterministic. Indeed, the examples are selected
to highlight the fact that the models can be established to price long-dated
claims under a richer class of volatility assumptions than could previously be
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accomplished in the HJM paradigm. Finally, comparisons between the pro-
portional velatility model in the RS class and the term strueture constrained
models of BDT are made.

It remains for future empirical work te establish how well models with
these volatility restrictions perform, and to identify whether the addition of a
few maturity varying parameters are necessary. If empirical studies show no
support for any volatility structures in the RS class, then, implementing the
HJM paradigm for long term claims and nondeterministic volatilities will
cantinue to remain an unresolved problem. If, on the other hand, empirical
support is found for velatility structures in our class, then this algorithm
should be useful for pricing and hedging purposes. Either way, empirical
research in this area has important consequences.
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