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An Exact Bond Option Formula
FARSHID JAMSHIDIAN*

ABSTRACT

This paper derives a closed-form solution for European options on pure discount bonds,
assuming a mean-reverting Gaussian interest rate model as in Vasicek [8]. The formula
is extended to European options on discount bond portfolios.

IN THIS PAPER WE derive a closed-form solution for European options on default-
free bonds. We assume that the term structure is completely determined by the
value of the instantaneous interest rate r(t) and that r(¢) follows a mean-
reverting Gaussian (normal) process as in Vasicek [8]. The resulting pricing
formula resembles the Black-Scholes formula and has a similar interpretation.
Moreover, an option on a portfolio of pure discount bonds (in particular, an
option on a coupon bond) decomposes into a portfolio of options on the individual
discount bonds in the portfolio.

In the Vasicek model it is assumed that r(t) evolves according to the diffusion
process:

dr = a(ro — r)dt + odw,

where ¢, a, and r, are positive constants and w(t) is a standard Wiener process.
The constant r, is interpreted as the historical average instantaneous rate, and
a is interpreted as the speed of reversion to this average. It is assumed that prices
of bonds and their derivative securities depend on r as the only state variable.
Standard arbitrage arguments as in Dothan [3] and Vasicek [8] imply that (i)
the price of risk A(r, t) (defined as the expected instantaneous excess return
above the riskless rate, divided by the instantaneous standard deviation of return)
is the same for all these securities and (ii) the price U(r, t) of a security paying
continuously at a rate h(r, t) and yielding a terminal payoff g(ry) at time T is
the solution of

U, + %o?U,, + a(f — r)U, — rU + h = 0, 1)
U(r, T) = g(r), (2)

where 7 = ro + Ao/a. We further assume that X is a constant.

Let P(r, t, s) denote the price at time ¢, given that r(t) = r, of a pure discount
bond maturing at a time s (the solution to (1)-(2) with T'=s,g(r) =1,and h =
0). Let

f(r, t, s) = —3/ds log P(r, t, s) 3)

* Vice-president, Financial Strategies Group, Merrill Lynch Capital Markets. I am grateful to an
anonymous referee for numerous helpful comments and to Yu Zhu for useful discussions.
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denote the forward rate at time ¢ and state r, implied for the instantaneous rate
at time s. Finally set

v3(¢, s) = var, . [r(s)] = ¢*(1 — e7*¢7")/2q, (4)
where the second equality is obtained as in Arnold [1], Section 8.3.
PROPOSITION:
(a) Under the above assumptions, the solution of (1)-(2) is given by
U(r, t) = P(r, t, T)E[g(R,.1)]

+ J;T P(r, t, s)E[h(R,,, s)] ds, (5)
where R,... denotes a normal random variable with mean f(r, t, s) and
variance v:(t, s). Moreover,!

P(r, t, s) = exp[¥ek®(t, s) — n(r, t, s)], (6)
f(r,t,s) = m(r, t,s) —q(t, s), (7)
where (denoting r =s — t)

m=m(r,ts)=er+ 1 -—e*)r,

n= n(rts)=1F+(r—7r)1 —e " )/a,

k2 = k%(t, s) = o%(4e™ — e 2 + 2ar — 3)/2a°,

g= q(t, s) = (1 — e )*/2a

(b) In particular, Equation (5) with g(r) = P(r, T, s) and h = 0 entails that
E[P] = forward price = P(r, t, s)/P(r, t, T),
P=PR..r,T,s).

Equation (5) also entails that the price at time t, given that r(t) = r, of a
call option on the s-maturity pure discount bond with exercise price K and
expiration T < s is given by

C(r, t, T, s, K) = P(r, t, T)E[max{0, P — K}]. (8)
Moreover, P is lognormal with
var[log P] = var,.[log P(r(T), T, s)] = o5
where
op=v(t, T)A — e 1) /q.
Hence,

C(r, ¢, T, s, K) = P(r, t, s)N(h) — KP(r, t, T)N(h — op),  (9)

! Equation (6) can readily be shown to be identical to equation (27) in Vasicek [8]. Also, note that,
if g is a constant and h is a deterministic function of time, equation (5) reduces to the obvious present
value expression.
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where
h = log[P(r, t, s)/P(r, t, T)K]/op + op/2.

(c) More generally, Equation (5) entails that the price C, at time t and state r
of a European call option with exercise price K and expiration T on a
portfolio consisting of a; > 0 issues of s;-maturity discount bonds is given by

C, = P(r, t, T)E[max{0, P, — K}],

where P, = Y a,P(R,.r, T, s;) and j runs over all indices for which T <s,.
Moreover,

Z ajP(r9 t, Sj)
P(r, t, T)

One also has the decomposition
max{0, P, — K} = ¥ o, max{0, P(R..7, T, s;) — K;}, (10)

where K; = P(r*, T, s;) and r* is the solution to ), a;P(r*, T, s;) = K.
Hence,*

E[P,] = = forward portfolio price.

C.=YaC(rtT,s, K).

The proof is given in the Appendix. The primary conclusion from the propo-
sition is that the price of the European call option equals the discounted expected
value of max{0, X — K} for some random variable X (independent of K) with
expectation equal to the forward bond (portfolio) price. It can be shown that a
similar statement is valid in all one-factor term structure models.?

The resemblance between the option pricing formula (9) and the Black-Scholes
formula is obvious. In both cases, the random variable X above is lognormal,
resulting in similar formulas. The discount factor P(r, t, T') plays the role of
e "=t in the Black-Scholes model, and ¢5%, which is the variance of the logarithm
of the price of the underlying security at option expiration, replaces ¢?(T — t) of
the Black-Scholes model, which has the same meaning. In other words, with
these substitutions, the Black-Scholes model and the Vasicek model produce
identical option values.

Part (c) of the proposition states that an option on a portfolio is equivalent to
a portfolio of options with appropriate strike prices. It is clear from the proof
that this decomposition extends to other situations where the prices of the
portfolio components are all strictly decreasing (or all strictly increasing) func-
tions of the same state variable.

Equation (9) is also similar to the option pricing formula of Cox, Ingersoll, and
Ross [2], equation (32), except for the appearance of the normal distribution
instead of the chi-squared distribution. The simpler formula here has the theo-

2 European put prices follow by put-call parity, namely,
call — put = Y qP(r, t, s) — P(r, t, T)K.

# A derivation of this more general result and its application to the square root process of Cox,
Ingersoll, and Ross [2] and a mean-reverting generalization of the Gaussian continuous-time limit of
the Ho and Lee model [5] is given in Jamshidian [6].
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retical disadvantage of yielding positive call option prices for arbitrarily large
strike prices. However, the magnitude of this deviation is often small, and the
computational simplicity of the formula makes it an attractive practical alter-
native, especially for the evaluation of European options on bond portfolios and
coupon bonds.

Appendix

Proof of the Proposition:

(a) Let F(t) be the “risk-neutral interest rate process”, defined by df = a(F —
F)dt + odw. Set Y(t, s) = [i F(u)du. Then it follows from Friedman [4],
Theorem 6.5.3, that the solution to (1)-(2) is*

T
U(r, t) = Er,z[g(f(T))e‘Y“’ D+ f h(F(s), s)e™Y®s) ds].
: t
This is equivalent to

Ur, t) = f G@r,r',t, T)g(r') dr’

T o
+ f f G(r,r’, t, s)h(r’, s) dr’ ds, (11)
t —

where

G(r,r'’, t, s) = f ep(r, t,s, r',y) dy (12)

and p(r, t, s, -, -) denotes the joint probability density of F(s), Y(¢, s)
conditional on 7(t) = r. To calculate p and G, we note that, by Corollary
8.2.4 in Arnold [1], 7(s) can be expressed as

F(s) = a™“7IF(t)
4 f e aF du + odi (w)]
= eI (F(t) = F)
+F+o Is e™ ™ dw (u)

and, in particular (as in Arnold [1], Section 8.3),

E,.[F(s)] = m(r, t, s), var,.[F(s)] = v3(, s),

“Here E,,[-] means E[- | F(t) = r]—similarly for variance.
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where m and v? are as above.® It also follows that 7(s) and Y(¢, s) are
bivariately normally distributed, and E..[Y (¢, s)] = n, var,.[Y(t, s)] = k%,
and cov, . [7(s), Y(¢, s)] = q.° This uniquely determines p, and (12) can now
be integrated to yield

G(r, r', t, s) = V2K (9p2) 12"~ (m=a))*/20" (13)

Setting h = 0, g = 1, and T = s in (11), (13) implies that P(r, ¢, s) =
exp(¥2k? — n). Taking logarithmic derivative gives f(r, t, s) = m — ¢. In
view of (11) and (13), Part (a) is now established.

Applying (5) with A = 0 and g(r) = max{0, P(r, T\ s) — K} gives (8). The
fact that P and P(r(T), T, s) are lognormal follows from (6) and the
expression for n, which show that P(r, T, s) is the exponential of a linear
function of r. The coefficient of r in this linear term is (1 — exp(—a(s —
T)))/a; thus, the expression for ¢p follows. Equation (9) now follows from
a well-known calculation involving the lognormal distribution.

The first statement follows as in Part (b). To prove (10), it suffices to
show that

max{O, Z Cle(r, T7 sj) _K} = 2 ajmax{(): P(r) T’ sj) - I<j}

However, this follows from the fact that all P(r, T, s,) are decreasing
functions of r. Indeed, from the way r* and K; are defined, we see that, if
r<r* then Y a,P(r, T, s,) > K and P(r, T, s;) > K;, with the reverse
inequality holding if r > r*,

° Note that var,,[F(s)] equals var,,[r(s)] and does not depend on r. A similar statement holds for

the other variance and covariance terms.
® These results are obtained by interchanging the order of integration and taking expectation (or
covariance). Details of these and other calculations in the paper may be obtained from the author.

o=y
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