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ABSTRACT

We consider the optimal intertemporal consumption and investment policy of a CARA

investor who faces fixed and proportional transaction costs when trading multiple risky

assets. We show that when asset returns are uncorrelated, the optimal investment policy

is to keep the dollar amount invested in each risky asset between two constant levels and

upon reaching either of these thresholds, to trade to the corresponding optimal targets. An

extensive analysis suggests that transaction cost is an important factor in affecting trading

volume and that it can significantly diminish the importance of stock return predictability

as reported in the literature.



This paper studies the optimal intertemporal consumption and investment policy of an

investor with a constant absolute risk aversion (CARA) preference and an infinite horizon.

The investor can trade in one risk-free asset and n ≥ 1 risky assets. In contrast to the

standard setting, the investor faces both fixed and proportional transaction costs in trading

any of these risky assets. In the absence of transaction costs and when risky asset prices

follow geometric Brownian motions, the optimal investment policy is to keep a constant

dollar amount in each risky asset, as shown by Merton (1971). This trading strategy requires

continuous trading in all the risky assets. In addition, the optimal consumption is affine

in the total wealth. In the presence of transaction costs, however, trading continuously in

a risky asset would incur infinite transaction costs. Therefore, risky assets are traded only

infrequently in this case.

The literature on optimal consumption and investment with multiple risky assets subject

to transaction costs is limited. Leland (2000) examines a multi-asset investment fund that

is subject to transaction costs and capital gains taxes. Under the assumption that the

fund has an exogenous target for each risky asset, he develops a relatively simple numerical

procedure to compute the no-transaction region. Akian, Menaldi, and Sulem (1996) consider

an optimal consumption and investment problem with proportional transaction costs for a

constant relative risk aversion (CRRA) investor when asset returns are uncorrelated. They

also use numerical simulations to compute the no-transaction region. Lynch and Tan (2002)

numerically solve a similar problem when stock returns are predictable in a discrete time

setting. Deelstra, Pham, and Touzi (2001) use the dual approach to obtain the sufficient

conditions for the existence of a solution to the optimal investment problem for an investor

who maximizes expected utility from her terminal wealth. Eastham and Hastings (1988)

address the optimal consumption and portfolio choice problem with transaction costs and

multiple stocks; however, they assume consumption can only be changed at the same time

that stock holdings are changed. Bielecki and Pliska (2000) analyze a similar problem with

a general transaction cost structure and risk-sensitive criteria but exclude intertemporal

consumption. None of these models obtain any analytically explicit shape for the no-

transaction region.

Our first contribution in this paper is to derive the optimal transaction policy in an
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explicit form when the risky asset returns are uncorrelated, up to some constants that can

be solved numerically. In particular, it is shown that the optimal investment policy in each

risky asset is for the investor to keep the dollar amount invested in the asset between two

constant levels. Once the amount reaches one of these two thresholds, the investor trades to

the corresponding optimal targets. To the best of our knowledge, this is the first paper to

present such an explicit form of trading strategy in the case of multiple risky assets subject

to fixed transaction costs.1 The optimal trading strategy implies that the no-transaction

and target boundaries have corners and only on reaching a corner does the investor trade in

more than one risky asset. Since the corner is of measure zero relative to the no-transaction

boundary, with probability one, the investor only trades in at most one risky asset at any

point in time.

When there are only proportional transaction costs for a risky asset, we show that

the optimal trading policy involves possibly an initial discrete change (jump) in the dol-

lar amount invested in the asset, followed by trades in the minimal amount necessary to

maintain the dollar amount within a constant interval.

The presence of fixed transaction costs implies that any optimal transaction involves

a lump-sum trade. In the absence of proportional transaction costs, the optimal trading

policy for each risky asset is to trade to the same target dollar amount as soon as the amount

in a risky asset goes beyond a constant range. If there are also proportional transaction

costs, the optimal investment policy then involves buying to a target amount as soon as the

amount in the risky asset falls below a lower bound and selling to a different target amount

as soon as the amount in the risky asset rises above an upper bound. Thus, the target

amounts depend on the direction of a trade. These results generalize the no-transaction-

cost case (the Merton case) where the optimal policy for a CARA investor is to maintain a

constant dollar amount in a risky asset.

In the presence of transaction costs, the dependence of the optimal consumption on total

wealth is also different from the standard results derived by Merton (1971). In particular,

the optimal consumption is no longer affine in total wealth. Instead, it is affine only in the

dollar amount invested in the risk-free asset but nonlinear in the dollar amounts in risky

assets.
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Our second contribution is that we conduct an extensive analysis of the optimal pol-

icy in the literature. We provide a simple way to compute the no-transaction and target

boundaries. We analyze the impact of risk aversion, risk premium and volatility on the

no-transaction region, the target amounts and the trading frequency. We also derive in

closed-form the steady-state distribution of the amount invested in a risky asset and ex-

amine the steady-state average amount invested in the asset. With no explicit form of

trading strategy derived, the existing literature provides only a very limited analysis of the

trading strategy, rarely going beyond the computation of the no-transaction region and the

target amounts. The explicit form of the boundaries (up to some numerically computed

constants) allows us to conduct this extensive analysis, which enhances our understanding

of the relationship between fundamental parameters and optimal investment policy in the

presence of transaction costs, and also yields some interesting results.

First, we find that small transaction costs can induce large deviations from the no-

transaction-cost case. For example, with five dollar fixed cost and one percent proportional

cost (which includes the bid-ask spread), the investor would purchase additional units of

a risky asset to reach the buy-target of $104,300 only when the actual amount fell below

$93,500. On the other hand, only when the actual amount rose above $152,600, would the

investor sell the risky asset to reach the sell-target of $138,300. In contrast, in the absence

of transaction costs, the investor would trade continuously to keep a constant amount of

$121,900 in the risky asset. This large deviation implies a very low frequency of trading.

For example, with five dollar fixed cost and one percent proportional cost, the average time

between sales would be about 1.2 years and the average time between purchases would

be about 2.5 years. We show that trading more frequently than the optimal strategy

would result in significant utility loss. This suggests that the gain from incorporating stock

return predictability (see for example, Kandel and Stambaugh (1996)) would be significantly

decreased if transaction costs were considered. Also, since transaction costs have dramatic

effects on both trading frequency and trading size, to explain the observed trading volume,

it seems that one must also consider transaction costs along with other standard factors

considered in the literature such as information asymmetries and heterogeneous beliefs (e.g.,

Admati and Pfleiderer (1988) and Wang (1994)).2
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Second, we show that conditional on positive investment in a risky asset, the steady-

state average amount invested in the asset increases as the transaction cost increases. This

result suggests that the presence of transaction costs makes the investor less risk averse

overall. Intuitively, to compensate for the transaction costs, the investor overshoots by

investing more than otherwise optimal in the risky asset. This finding in particular implies

that after an increase in transaction costs, to induce an investor to hold the same average

amount as before, one needs to lower the expected return of the risky asset ceteris paribus.

In addition, we find that as the return volatility of a risky asset rises, the no-transaction

region narrows, the expected time to the next purchase after a trade decreases, but the

expected time to the next sale after a trade increases. This finding seems counterintuitive

because as the volatility increases the investor could be expected to widen the no-transaction

region to decrease the trading frequency in order to save on transaction costs. However,

saving transaction costs is not the investor’s only concern. As volatility increases, so does

risk, and hence, on average, the investor holds less in the risky asset. Over time then, the

investor needs to sell the risky asset less frequently to increase current consumption, and

actually buys more often to finance future consumption.

A large body of literature addresses the optimal transaction policy for an agent facing a

proportional transaction cost in trading a single risky asset (see for example, Constantinides

(1986), Davis and Norman (1990), Dumas and Luciano (1991), Shreve and Soner (1994),

Cuoco and Liu (2000), and Liu and Loewenstein (2002)). In contrast, this paper considers

multiple risky assets with both proportional costs and fixed costs. Closely related models

of optimal consumption and investment with fixed costs and one risky asset have been

previously analyzed by Schroder (1995), Øksendal and Sulem (1999), and Korn (1998).

These papers do not provide explicit forms for the no-transaction or target boundaries

and they use numerical procedures to directly solve the Hamilton-Jacobi-Bellman partial

differential equations (HJB PDE) with free boundaries. Lo, Mamaysky and Wang (2001)

study the effect of fixed transaction costs on asset prices and find that even small fixed costs

can give rise to a significant illiquidity discount on asset prices. This finding is in sharp

contrast to the proportional transaction cost case considered by Constantinides (1986) and

shows the importance of fixed transaction costs in a financial market.
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Also related are papers that assume quasi-fixed transaction costs (see for example, Duffie

and Sun (1990), Morton and Pliska (1995) , and Grossman and Laroque (1990)). While

the assumption of quasi-fixed costs simplifies analysis (e.g., with power utility function, the

homogeneity of the value function is preserved and hence the HJB PDE can be simplified

into an ordinary differential equation (ODE)), the solution is at best an approximation for

investors who face fixed costs such as those charged by brokers.

In a different context, Constantinides (1976) and Constantinides and Richard (1978)

study the optimal cash management policy in the presence of fixed and proportional trans-

action costs. Cadenillas and Zapatero (1999) examine the optimal intervention of a central

bank in the foreign exchange market where the bank directly controls the exchange rate but

incurs fixed and proportional intervention costs. Korn (1997) investigates a one-dimensional

optimal impulse control for a cost minimization problem when there are both fixed and pro-

portional control costs.

Three main aspects of the model we present here make it more tractable and thus

better able to yield an extensive analysis than other models in the literature. First, CARA

preferences and the absence of borrowing constraints3 imply the separability of optimal

policies for the risk-free asset, risky assets and consumption. Second, the assumption of

uncorrelated risky asset returns enables us to further break down the analysis of multiple

risky assets into an analysis of individual assets. Third, the standard assumption of no

transaction cost in liquidating the risk-free asset to buy the consumption good is also

important. Without this feature, consumption would only occur at optimal stopping times,

which would in turn require a more complicated analysis.

The case of uncorrelated asset returns is of practical interest. Uncorrelated assets are

commonly recommended to achieve efficient diversification, and there exist asset classes with

nearly zero correlations. Indeed, some investors (e.g., funds of funds) view themselves as

facing a menu of uncorrelated assets. In addition, other investors may also find it beneficial

to limit their trading to uncorrelated portfolios.

The remainder of the paper is organized as follows. Section I describes the model.

Section II solves the investor’s optimal consumption and investment problem in the absence

of transaction costs, providing a benchmark for the subsequent analysis. Section III contains
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a heuristic derivation of the optimal policies in the presence of only proportional transaction

costs. It also provides sufficient conditions under which the conjectured policies are indeed

optimal. Section IV derives the optimal policy in the presence of only fixed transaction

costs. Section V obtains the optimal policy in the presence of both fixed and proportional

transaction costs. Section VI addresses the correlated asset case. Section VII contains an

extensive analysis of the optimal policy. Section VIII concludes the paper and discusses

some possible extensions. In Appendix A, we provide the proofs for the main results and

in Appendix B, we provide the solution algorithms.

I. The Model

A. The Asset Market

Throughout this paper we assume a probability space (Ω,F , P ) and a filtration {Ft}. Un-

certainty in the model is generated by a standard n-dimensional Brownian motion w (a

n× 1 column vector).

There are n + 1 assets our investor can trade. The first asset (“the bond”) is a money

market account growing at a constant, continuously compounded rate of r > 0. The other

n assets are risky (hereafter we will use “stocks” and “risky assets” interchangeably). The

investor can buy stock i at the ask price of Si(t) and sell it at the bid price of (1−αi)Si(t),

where 0 ≤ αi < 1 represents the proportional transaction cost rate.4 In addition, the investor

has to pay a fixed brokerage fee Fi ≥ 0 for each transaction in either direction when trading

stock i.5 Let α = (α1, α2, ..., αn) and F = (F1, F2, ..., Fn). For simplicity, we assume no

dividend is paid by any stock. For i = 1, 2, ..., n, the ask price Si(t) is assumed to follow a

geometric Brownian motion:
dSit
Sit

= µidt+ σidwit, (1)

where wi is the ith element of the n-dimensional standard Brownian motion w, µi > r, and

σi > 0.6
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B. The Investor’s Problem

There is a single perishable consumption good (the numeraire). Following Merton (1971),

we assume that the investor derives her utility from intertemporal consumption c of this

good. We use C to denote the investor’s admissible consumption space, which consists of

progressively measurable consumption processes ct such that
∫ t
0 |cs|ds < ∞ for any t ∈

[0,∞). In addition, similar to Merton (1971), Vayanos (1998), and Lo, Mamaysky and

Wang (2001), we assume that the investor has a CARA preference with time discounting,

i.e., u(c, t) = e−δt(−e−βc) for some absolute risk aversion coefficient β > 0 and time discount

parameter δ > 0. We further assume that consumption withdrawals, stock trades and

transaction cost payments are all made through the money market account.

Let x be the amount invested in the money market account, yi be the amount in the

ith stock, and y = (y1, y2, ..., yn). We then have the following dynamics for xt and yt:

dxt = rxtdt− ctdt−
n
∑

i=1

(

dIit − (1− αi)dDit + Fi1{dIit+dDit>0}

)

, (2)

dyit = µiyitdt+ σiyitdwit + dIit − dDit, i = 1, 2, ..., n, (3)

where the processes Di and Ii represent the cumulative dollar amount of sales and purchases

of the ith stock, respectively. These processes are nondecreasing, right-continuous and

adapted, with D(0) = I(0) = 0, where D = (D1, D2, ..., Dn) and I = (I1, I2, ..., In). In

addition, let

Wt = xt +
n
∑

i=1

[(1− αi)y
+
it − y

−
it − Fi1{yit 6=0}] (4)

denote the liquidated wealth at time t.

To rule out any arbitrage opportunity such as doubling strategies or “Ponzi schemes,”

similar to Lo, Mamaysky and Wang (2001), we restrict the set of trading policies to be such

that7

lim
t→∞

E[e−δt−rβWt ] = 0 and E

∫ T

0
|yte

−δt−rβWt |2dt <∞, ∀T ∈ [0,∞). (5)

This set of trading policies is also the set within which the Merton solution (see next section)

in the no-transaction-cost case is optimal.

We use Θ(x, y) to denote the set of admissible trading strategies (I,D, c) such that the

implied xt and yt from equations (2) and (3) satisfy condition (5) starting from x0 = x and
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y0 = y. The investor’s problem is then to choose admissible trading strategies I, D and c

to maximize E[
∫∞
0 u(ct, t)dt]. We define the value function at time t to be

v(x, y) = sup
(I,D,c)∈Θ(x,y)

E[

∫ ∞

t
e−δ(s−t)(−e−βcs)ds|Ft, xt = x, yt = y]. (6)

II. Optimal Policies with No Transaction Costs

For the purpose of comparison we present in this section the main results for the no-

transaction-cost case (i.e., α = 0 and F = 0) without proof (see Merton (1971)). In the

absence of transaction costs, the cumulative purchase and sale processes of the stocks can

be of infinite variation and in this case the liquidated wealth Wt = xt + yt1̄, where 1̄ is an

n-element column vector of 1’s. The investor’s problem can then be rewritten as

v(w) = sup
(y,c)

E[

∫ ∞

0
e−δt(−e−βct)dt|W0 = w]

subject to

dWt = rWtdt+
n
∑

i=1

((µi − r)yitdt+ σiyitdwit)− ctdt.

Theorem 1. Suppose α = F = 0. Let

yMi =
µi − r

rβσ2i
, i = 1, 2, ..., n. (7)

The optimal consumption and investment policies are

c∗t = rW ∗
t + γ, y∗it = yMi , i = 1, 2, ..., n,

for all t > 0, respectively, where W ∗
t is the optimal wealth process derived from following

the above policies and

γ =
δ − r

rβ
+

n
∑

i=1

(µi − r)
2

2rβσ2i
.

Moreover, the value function is

v(w) = −
1

r
e−rβw−βγ .

Thus, without transaction costs, the optimal policy involves investing a constant dollar

amount in each stock, and the optimal consumption is an affine function of total wealth.

This investment policy requires continuous trading in every stock. We will show later that

none of these results hold in the presence of transaction costs.
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III. The Proportional Transaction Cost Case

We begin by addressing the case with only proportional transaction costs (i.e., α > 0 and

F = 0). In contrast to the no-transaction-cost case, the stock trading will now become

infrequent. We provide a heuristic derivation of the optimal policy in this section. In the

single-stock case, Davis and Norman (1990), Shreve and Soner (1994), and Liu and Loewen-

stein (2002) show that in the presence of proportional costs there exist a no-transaction

region and exist a transaction region. Similarly, in the multiple stock case, we conjecture

that there exist a transaction region wherein the investor trades at least one stock and

a no-transaction region (NT) where she does not trade any stock. Inside NT, the value

function must satisfy the HJB equation:

max
c

(
n
∑

i=1

(
1

2
σ2i y

2
i vyiyi

+ µiyivyi
) + rxvx − cvx − δv − e

−βc) = 0. (8)

The optimal consumption is thus

c∗ = −
1

β
log(

vx
β
),

which implies that (8) becomes

n
∑

i=1

(
1

2
σ2i y

2
i vyiyi

+ µiyivyi
) + rxvx +

vx
β

log(
vx
β
)− δv −

vx
β

= 0. (9)

We conjecture that

v(x, y1, y2, ..., yn) = −
1

r
e−rβx−

∑n

i=1
ϕi(rβyi), (10)

for some functions ϕi : IR→ IR.

For expositional convenience, we let zi = rβyi be the scaled amount in the ith stock and

ψi be the restriction of ϕi in the no-transaction region. Then equation (9) becomes

n
∑

i=1

(
1

2
σ2i z

2
i ψ
′′
i −

1

2
σ2i z

2
i ψ
′
i
2
+ µiziψ

′
i − rψi) + (δ − r) = 0. (11)

For equation (11) to hold, it is clear that the following n ODEs must be satisfied:

1

2
σ2i z

2
i ψ
′′
i −

1

2
σ2i z

2
i ψ
′
i
2
+ µiziψ

′
i − rψi +

δ − r

n
− λi = 0, (12)

9



for some constants λi such that
∑n
i=1 λi = 0 and i = 1, 2, ..., n.

We note that the above ODE system is not only independent of the amount x in the

money market account but also completely separable in zi’s. This observation suggests that

if the boundary conditions are also separable in zi’s, then the optimal stock transaction

policy in stock i would depend only on the amount in the stock, but not on the amount in

the money market account or the amounts in other stocks. We will show later that this is

indeed the case. We thus further conjecture that there exist two critical numbers, y
i
and ȳi

with y
i
< ȳi, which characterize the optimal trading strategy for this stock. To be specific,

we conjecture that the optimal policy is to buy enough to reach the buy boundary y
i
if

yit ≤ y
i
and sell enough to reach the sell boundary ȳi if yit ≥ ȳi. According to the proposed

transaction policy, in a stock’s transaction region the marginal (indirect) utility from the

bond holding must be always equal to the marginal utility from the stock holding, net of

transaction costs. Therefore, the differential equation in a transaction region where stock i

is purchased can be written as

vyi
(x, y1, y2, ..., yi, ..., yn) = vx(x, y1, y2, ..., yi, ..., yn) (13)

and similarly, in a transaction region where stock i is sold the differential equation must be

vyi
(x, y1, y2, ..., yi, ..., yn) = (1− αi)vx(x, y1, y2, ..., yi, ..., yn). (14)

In addition, the optimality of y
i
and ȳi implies that v is C2 in all its arguments and in all

regions (cf. Dumas (1991)).

Using equations (10), (13) and (14) and letting zi = rβy
i
and z̄i = rβȳi, we then obtain

the following forms for ϕi in the transaction regions:

(i) if zi < zi,

ϕi(zi) = Ci1 + zi

and

(ii) if zi > z̄i,

ϕi(zi) = Ci2 + (1− αi)zi,

where Ci1 and Ci2 are two constants to be determined. The proposed transaction policy

and the C2 property of the value function then imply the following six boundary conditions
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in terms of ψi:

ψi(zi) = Ci1 + zi, (15)

ψ′i(zi) = 1, (16)

ψ′′i (zi) = 0, (17)

ψi(z̄i) = Ci2 + (1− αi)z̄i, (18)

ψ′i(z̄i) = 1− αi (19)

and

ψ′′i (z̄i) = 0. (20)

Therefore, the boundary conditions (15)-(20) are indeed all independent of the holdings

in the bond and separable in zi’s. Thus, the above conjectures about the form of the

no-transaction region and the related optimal transaction policy are justified.

Next, consider a variation of the ODE (12) for stock i:

1

2
σ2i z

2
i ψ
′′
i −

1

2
σ2i z

2
i ψ
′
i
2
+ µiziψ

′
i − rψi +

δ − r

n
− λi − ηi = 0, (21)

where ηi is a constant. Suppose ψi, zi and z̄i are the solution to (12) subject to the

boundary conditions (15)-(20), then fi(zi) = ψi(zi)− ηi/r and the same boundaries zi and

z̄i are the solution to equation (21) subject to the corresponding six boundary conditions

derived from replacing ψi with fi in conditions (15)-(20). This result holds because zi

and z̄i are independent of any constant term in ψi. This observation also applies to the

cases considered in subsequent sections and implies in particular that the boundaries are

independent of δ in all the cases considered in this paper. This shows that the undetermined

λi in equation (12) does not affect the optimal boundaries zi or z̄i. In addition, because

of the condition
∑n
i=1 λi = 0 and the property of the solution, v is also independent of λi.

Therefore, without loss of generality, we can set λi = 0 for all i = 1, 2, ..., n. Consequently,

we have
1

2
σ2i z

2
i ψ
′′
i −

1

2
σ2i z

2
i ψ
′
i
2
+ µiziψ

′
i − rψi +

δ − r

n
= 0, (22)

for i = 1, 2, ..., n.

The above discussion suggests that when there are multiple risky assets subject to pro-

portional costs and their returns are uncorrelated, we can compute the optimal boundaries

11



separately for each stock. This greatly reduces the dimensionality of the computation prob-

lem, making it feasible to compute the optimal trading strategy for a large number of risky

assets.

Define

ϕi(zi) =























Ci2 + (1− αi)zi if zi ≥ z̄i

ψi(zi) if zi < zi < z̄i

Ci1 + zi if zi ≤ zi.

(23)

We next provide a verification theorem which shows the validity of the above conjectured

optimal policies and the form of the value function.

Theorem 2. Assume α > 0 and F = 0, and ∀i ∈ {1, 2, ..., n}, let ϕi be as defined in (23).

Consider any stock i. Suppose there exist constants Ci1, Ci2, zi, and z̄i such that ψi is a

solution of ODE (22) subject to conditions (15)-(20) and in addition,

1− αi < ψ′i(zi) < 1, ∀zi ∈ (zi, z̄i). (24)

Then ψi is the unique solution to ODE (22) subject to conditions (15)-(20) and (24), from

which the corresponding optimal consumption policy is

c∗t = rx∗t +
1

β

n
∑

i=1

ϕi(rβy
∗
it),

and the corresponding optimal risky asset trading policy is to transact the minimal amount

necessary to maintain y∗it between y
i
and ȳi, where x

∗
t and y∗it are the bond holding and

risky asset holding processes derived from following the above policies. Moreover, the value

function is

v(x, y) = −
1

r
e−rβx−

∑n

i=1
ϕi(rβyi).

Proof. The proof of this theorem is only a slight variation of the proof of Theorem 4 (see

below) and is thus omitted.8

If equation (22) has a closed form solution, then we would have a solution for ψi with

two integration constants Ai and Bi. Using the above six boundary conditions, we would

then solve for the six unknowns, Ci1, Ci2, zi, z̄i, Ai, and Bi. Unfortunately, equation (22)

belongs to a special class of Abel differential equations whose closed form solution, if any,
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has not yet been obtained (see for example, Cheb-Terrab and Roche (1999)) except for the

special case where µi =
1
2σ

2
i . However, the above free-boundary problem can be numerically

solved quite easily using a simple algorithm (Algorithm 1) as explained in Appendix B.9

To facilitate understanding of the optimal policy, we provide numerical illustrations

below. Since the optimal stock trading strategy is separable in individual stocks, most of

the following numerical analysis will focus on the single stock case and for clarity, we will

suppress all subscripts when there is only one stock considered in a figure. For all numerical

illustrations, we use the following default values for the parameters unless otherwise stated:

According to Ibbotson and Sinquefeld (1982), we set the excess return µ−r and the volatility

σ at 5.9 percent and 22 percent, respectively; in addition, following Grossman and Laroque

(1990), we set the real risk-free rate r at one percent and the time discount rate δ at 0.01;

finally, Lo, Mamaysky and Wang (2001) examine cases in which β lies between 0.001 and

5.000, and we set it to the low end, 0.001, to emphasize the effect of transaction costs.

Of course, this is by no means an attempt to calibrate our model for empirical analysis

purposes.

Figure 1 displays the optimal no-transaction boundaries z and z̄ as functions of the

proportional transaction cost rate. Without transaction costs (α = 0), the investor would

always keep $121,900 in the stock, as represented by the thin middle line. Note that this

is the actual amount that is equal to the scaled amount in the figure divided by rβ. In

the presence of transaction costs, it is no longer optimal to always maintain a fixed amount

in the stock. Instead, the investor allows the amount in the stock to fluctuate within a

certain range. When α = 0.01, for example, the investor will not adjust the amount she

invests in the stock until it reaches the bounds of $99,400 or $144,700. Thus, the presence

of transaction costs has a significant impact on the optimal trading strategy. It should also

be noted that as the transaction cost rate increases, the buy boundary decreases and the

sell boundary increases, making the investor trade less frequently.Figure 1

Here
→
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IV. The Fixed Transaction Cost Case

When there are fixed transaction costs, the infinitesimal transaction policy proposed in the

previous section is no longer optimal. In this case, all transactions involve lump-sum trades,

because cost is independent of the size of a trade. In this section, we consider the case when

the investor pays only fixed costs but not proportional transaction costs (i.e., F > 0 and

α = 0).

In the presence of only fixed costs, we conjecture that the optimal policy for any stock i

is characterized by three (instead of two, as in the previous section) critical numbers: y
i
, y∗i ,

and ȳi. When the amount in the stock reaches the buy boundary, y
i
, or the sell boundary,

ȳi, it is optimal to trade to y∗i . For the form of the value function, we conjecture that (10)

is still valid.

In the no-transaction region, the HJB ODE system (22) in the previous section still

holds. However, the conditions in the transaction regions (i.e., where yi ≤ y
i
or yi ≥ ȳi)

need to be changed.

According to the proposed transaction policy, we have

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi − (y∗i − yi), y1, y2, ..., y
∗
i , ..., yn) (25)

for any yi ≤ y
i
and

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi + (yi − y
∗
i ), y1, y2, ..., y

∗
i , ..., yn) (26)

for any yi ≥ ȳi. In addition, the optimality of y∗i implies that

vyi
(x, y1, y2, ..., y

∗
i , ..., yn) = vx(x, y1, y2, ..., y

∗
i , ..., yn). (27)

Let ψi be the restriction of ϕi in the no-transaction region, zi = rβy
i
, z∗i = rβy∗i , and

z̄i = rβȳi. To provide sufficient conditions for optimality, we focus on the case where the

value function is C1. Using equations (10), (25)-(27) and the C1 property, we obtain the

following seven boundary conditions:

ψi(zi) = Ci1 + zi, (28)

ψ′i(zi) = 1, (29)
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ψ′i(z
∗
i ) = 1, (30)

ψi(z̄i) = Ci2 + z̄i, (31)

ψ′i(z̄i) = 1, (32)

ψi(z
∗
i ) = Ci1 + rβFi + z∗i (33)

and

ψi(z
∗
i ) = Ci2 + rβFi + z∗i , (34)

where Ci1 and Ci2 are two constants to be determined. Comparing equations (33) and

(34), we have Ci1 = Ci2. This result implies that for any stock i, we only need to solve six

equations (as in the previous section) for six unknowns: Ci1, zi, z
∗
i , z̄i, and two integration

constants.

We note that, in contrast to the case with only proportional costs, in the presence of

fixed costs the above free boundary problem is no longer β free. In particular, β enters

the boundary conditions (33) and (34). However, given values of r, Fi, and β that are of

economically meaningful magnitudes, zi, z
∗
i , and z̄i are generally not sensitive to changes

in β.

The following theorem records results for the value function and the optimal trading

strategy in this case.

Theorem 3. Assume F > 0 and α = 0, and ∀i ∈ {1, 2, ..., n}, let ϕi be as defined in (23).

Consider any stock i. Suppose there exist constants Ci1, Ci2, zi, z
∗
i , and z̄i such that ψi is

a solution of ODE (22) subject to conditions (28)-(34) and in addition,

ψ′i(zi) > 1, ∀zi ∈ (zi, z
∗
i ), (35)

and

0 < ψ′i(zi) < 1, ∀zi ∈ (z∗i , z̄i). (36)

Then ψi is the unique solution to ODE (22) subject to conditions (28)-(36), from which the

corresponding optimal consumption policy is

c∗t = rx∗t +
1

β

n
∑

i=1

ϕi(rβy
∗
it),
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and the corresponding optimal risky asset trading policy is to transact to y∗i only when

y∗it ≤ y
i
or y∗it ≥ ȳi, where x

∗
t and y

∗
it are the bond holding and risky asset holding processes

derived from following the above policies. Moreover, the value function is

v(x, y) = −
1

r
e−rβx−

∑n

i=1
ϕi(rβyi).

Proof. This theorem is a special case of Theorem 4 (see below).

Figure 2 displays the optimal no-transaction boundaries z and z̄ and the optimal target

z∗ as functions of the fixed cost. In the presence of fixed transaction costs, it is no longer

optimal for the investor to transact an infinitesimal amount to keep the amount in the stock

within a specified range. When F = $5, for example, the investor will allow the actual

amount in the stock to fluctuate between $105,200 and $139,800. If the actual amount

reaches $105,200, the investor will buy $16,600 worth of the stock. On the other hand, if

the actual amount reaches $139,800, the investor will sell $18,000 worth of the stock. Thus,

the presence of fixed transaction costs also has a significant impact on trading. The large

size of the no-transaction region derives mainly from the low risk aversion we used in the

numerical illustration. As the risk aversion β increases, the size of the no-transaction region

shrinks, as will be shown later. In addition, it should be noted that as in the previous case,

as transaction costs increase the buy boundary decreases and the sell boundary increases.

However, the sensitivity of the optimal target y∗ to changes in transaction costs is very

small. It only decreases from $121,900 to $121,500 as the fixed cost increases from $0

to $30, making z∗ indistinguishable from the Merton line in the figure. This finding is

consistent with the intuition that roughly speaking, the investor is better off being around

the Merton line, on average, even in the presence of transaction costs.Figure 2

Here
→

Based on the insensitivity of the target amount to fixed costs, to obtain the optimal

boundaries, one can first fix z∗i to be the Merton line, and then choose Ci1 to satisfy all the

conditions except (34). This one-dimensional search is straightforward.

To measure the relative effect of the proportional and fixed costs on the welfare of the

investor, we define the equivalent fixed cost F for a given proportional cost α to be the

fixed cost such that the investor is indifferent between facing only the fixed cost and facing

only the proportional cost, i.e., the F such that v(x, y;F ) = v(x, y;α). For a given α, if
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the fixed cost exceeds the equivalent F , then the investor prefers to face the proportional

transaction cost. Otherwise, the investor prefers to face the fixed transaction cost. Figure

3 plots the equivalent fixed cost F against the proportional cost α for several risk aversion

levels. For β = 1, the investor is indifferent between facing a proportional cost of five

percent and facing a fixed cost of $2. As the proportional cost increases, the equivalent

fixed cost increases at an increasing rate. In addition, as the risk aversion decreases, the

equivalent fixed cost increases significantly. For example, if β = 0.1, the equivalent fixed

cost for a five percent proportional cost becomes as high as $18. Intuitively, as the investor’s

risk aversion decreases, the amount the investor holds in a stock increases. Therefore, the

relative impact of a given fixed cost becomes smaller.Figure 3

Here
→

V. The Fixed and Proportional Cost Case

When the investor is subject to both fixed and proportional costs for each transaction, the

problem becomes even more complicated. We conjecture that in this case, there exist four

(instead of three, as in the previous section) critical numbers, y
i
, y∗
i
, ȳ∗i , and ȳi ( yi < y∗

i
<

ȳ∗i < ȳi), characterizing the optimal trading strategy. Specifically, we conjecture that the

optimal policy is to transact immediately to the buy-target y∗
i
if yit ≤ y

i
and to jump to

the sell-target ȳ∗i if yit ≥ ȳi. In addition, the value function still satisfies the HJB ODE

system (22) in the no-transaction region.

According to the proposed transaction policy, we must have

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi − (y∗
i
− yi), y1, y2, ..., y

∗
i
, ..., yn)

for any yi ≤ y
i
, and

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi + (1− αi)(yi − ȳ
∗
i ), y1, y2, ..., ȳ

∗
i , ..., yn)

for any yi ≥ ȳi, where i = 1, 2, ..., n.

The optimality of y∗
i
and ȳ∗i implies that

vyi
(x, y1, y2, ..., y

∗
i
, ..., yn) = vx(x, y1, y2, ..., y

∗
i
, ..., yn)
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and

vyi
(x, y1, y2, ..., ȳ

∗
i , ..., yn) = (1− αi)vx(x, y1, y2, ..., ȳ

∗
i , ..., yn),

for any i = 1, 2, ..., n.

Plugging equation (10) into the boundary conditions and using the C1 property of v,

we obtain the following eight boundary conditions:

ψi(zi) = Ci1 + zi, (37)

ψ′i(zi) = 1, (38)

ψ′i(z
∗
i ) = 1, (39)

ψ′i(z̄i) = 1− αi, (40)

ψ′i(z̄
∗
i ) = 1− αi, (41)

ψi(z̄i) = Ci2 + (1− αi)z̄i, (42)

ψi(z
∗
i ) = Ci1 + rβFi + z∗i (43)

and

ψi(z̄
∗
i ) = Ci2 + rβFi + (1− αi)z̄

∗
i , (44)

for i = 1, 2, ..., n, where zi = rβy
i
, z∗i = rβy∗

i
, z̄∗i = rβȳ∗i , and z̄i = rβȳi.

We then have the following result for the value function and the optimal trading strategy.

Theorem 4. Assume F > 0 and α > 0, and ∀i ∈ {1, 2, ..., n}, let ϕi be as defined in (23).

Consider any stock i. Suppose there exist constants Ci1, Ci2, zi, z
∗
i , z̄

∗
i , and z̄i such that ψi

is a solution of ODE (22) subject to conditions (37)-(44), and in addition,

ψ′i(zi) > 1, ∀zi ∈ (zi, z
∗
i ), (45)

1− αi < ψ′i(zi) < 1, ∀zi ∈ (z∗i , z̄
∗
i ) (46)

and

0 < ψ′i(zi) < 1− αi, ∀zi ∈ (z̄∗, z̄i). (47)
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Then ψi is the unique solution to ODE (22) subject to conditions (37)-(47), from which the

corresponding optimal consumption policy is

c∗t = rx∗t +
1

β

n
∑

i=1

ϕi(rβy
∗
it), (48)

and the corresponding optimal risky asset trading policy is to transact to y∗
i
only when

y∗it ≤ y
i
, and transact to ȳ∗i only when y∗it ≥ ȳi, where x

∗
t and y

∗
it are the bond holding and

risky asset holding processes derived from following the above policies. Moreover, the value

function is

v(x, y) = −
1

r
e−rβx−

∑n

i=1
ϕi(rβyi).

Proof. See Appendix A.

To help us compute the optimal boundaries and understand the boundary behavior, we

present the following proposition that provides some bounds on the optimal boundaries.

Proposition 1. For any i = 1, 2, ..., n, if y
i
(αi, Fi) and ȳi(αi, Fi) are, respectively, the

optimal buy and sell boundaries as specified in Theorem 4 for given αi and Fi, with αi+Fi >

0, then

y
i
(αi, Fi) < yMi and ȳi(αi, Fi) >

yMi
1− αi

, (49)

where yMi is the Merton line for stock i as defined in (7). In addition, for Fi > 0, we have

y
i
(αi, Fi) < y

i
(αi, 0) and ȳi(αi, Fi) > ȳi(αi, 0). (50)

Proof. See Appendix A.

Proposition 1 shows that the buy and sell boundaries always bracket the Merton line.

In addition, as αi ↑ 1, the sell boundary goes to infinity and thus cannot be bounded

from above. Moreover, the boundaries with fixed costs always bracket the corresponding

boundaries with no fixed costs. This proposition makes the computation of the optimal

boundaries more efficient by providing better initial values for the boundaries and the

direction of changes as transaction costs change.

According to Theorem 4, we need to find zi, z
∗
i , z̄

∗
i , z̄i, Ci1, and Ci2 such that ψi solves

ODE (22) and satisfies conditions (37)-(44).10 Appendix B presents an algorithm that ef-

fectively reduces the problem to a two-dimensional search procedure.
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Figure 4 shows the typical shape of ϕ′(z) within the no-transaction region. Clearly, it

satisfies conditions (45)-(47) in the above theorem. This figure also shows that the value

function is C2 almost everywhere except at z and z̄, where it is only C1. In addition,

ϕ(z) is first convex, then turns into a concave function, then changes back into a convex

function. This implies that the value function v is not globally concave. This is because

a convex combination of two policies does not always outperform these two policies due to

the presence of fixed costs.Figure 4

Here
→

Figure 5 shows the no-transaction and transaction regions when there are two stocks

subject to both fixed and proportional costs. The interior of “ABCD” represents the no-

transaction region; “abcd” and its extensions inside “ABCD” are the target boundaries.

There are eight transaction regions. The arrow lines represent the transaction directions in

these transaction regions. For example, in the “Sell 1 Buy 2” region (the quadrant starting

at point “C”), the investor sells stock 1 and buys stock 2 to reach the target point “c.”

Similarly, in the “NT 1 Sell 2” region, the investor sells stock 2 but does not trade in stock

1 to reach the target point on the segment “ad.” After the initial trade, the investor always

stays in “ABCD.” In addition, only when she reaches one of the four corners, “A”, “B”,

“C” or “D,” does she trade simultaneously in more than one stock. This event is obviously

of probability zero because the set of these corners is of measure zero relative to the no-

transaction boundary, and z1t and z2t follow geometric Brownian motions inside “ABCD.”

In general, when there are n stocks, the investor trades in more than one stock only when

these stocks simultaneously reach their respective transaction boundaries. This implies that

when there are multiple risky assets, with probability one, the investor only trades in at

most one stock at any point in time.Figure 5

Here
→

This figure is in contrast to that of Morton and Pliska (1995) whose numerical computa-

tion shows that the no-transaction region approximates an ellipse. It is generally suspected

that the no-transaction region boundary should be an ellipse and thus differentiable every-

where. We show, however, that this is not true in our case. In particular, the boundary

of the no-transaction region in our model is not an ellipse, but rather does have “corners”

(in general, a set with dimension n− 2), and thus is not differentiable at these points. The

20



assumption of uncorrelated returns is not the reason for this difference. In the presence of

correlations among the stock returns, we conjecture the no-transaction boundaries would

also have corners as long as the correlations were not perfect. The only difference would

be that the no-transaction boundaries would be skewed one way or the other depending on

the signs of the correlations (see next section for an example).11 Moreover, the assumption

of a CARA preference is not critical either. For other utility functions such as a CRRA

preference, the no-transaction and target boundaries would also have these non-smooth

points. Intuitively, these “corners” arise because, to the investor, one stock is not a perfect

substitute for another.

Figure 6 plots the optimal boundaries z, z∗, z̄∗, and z̄ as functions of the fixed cost for

α = 0.01. In the presence of both fixed and proportional transaction costs, it is no longer

optimal to trade to the same boundary as was suggested in the previous section. If F = $5,

for example, the investor would buy $10,800 worth of the stock to reach the buy-target of

$104,300 when the actual amount of the investment decreases to $93,500. If, on the other

hand, the market goes up and the actual amount of the investment increases to $152,600,

the investor would sell $14,300 worth of the stock to reach the sell-target of $138,300. In

addition, as the fixed cost decreases toward zero, z and z∗ (z̄ and z̄∗) approaches the z (z̄)

for the case with only proportional costs. Furthermore, as the fixed cost F increases, z∗

and z̄∗ converge to z∗ in the fixed cost case. This convergence occurs because as F becomes

much larger than the proportional cost, α, the impact of transaction costs originates more

and more from the fixed costs.Figure 6

Here
→

Figure 7 shows the optimal boundaries z, z∗, z̄∗, and z̄ as functions of the proportional

cost rate for F = $5. If α = 0.05, for example, the investor will buy $8,200 worth of stock

when the actual amount of the investment reaches $79,600. If the market goes up and the

actual amount increases to $171,900, the investor will sell $13,500 worth of stock. As the

proportional transaction cost increases, both the size of a purchase after reaching the buy

boundary z and the size of a sale after reaching the sell boundary z̄ decrease. In addition,

as the proportional cost approaches zero, z∗ and z̄∗ approach the z∗ for the case with only

fixed costs.Figure 7

Here
→
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VI. Fixed and Proportional Costs with Correlated Asset Re-

turns

In this section, we extend the analysis in the previous sections to the case with correlated

asset returns. We assume that the asset prices still evolve as in (1). However, we allow the

correlations among the asset returns to be nonzero, i.e., wi(t) and wj(t) may have nonzero

correlation. We denote the correlation between asset i return and asset j return as ρij , with

ρii = 1, ∀i = 1, 2, ..., n. While we extend the logic of the previous section to conjecture the

optimal policies in this case, we cannot make the formal statement analogous to Theorem

4.

Inside NT, the value function must satisfy the HJB equation:

1

2

n
∑

i=1

n
∑

j=1

(ρijσiσjyiyjvyiyj
) +

n
∑

i=1

(µiyivyi
) + rxvx +

vx
β

log(
vx
β
)− δv −

vx
β

= 0. (51)

We conjecture that

v(x, y1, y2, ..., yn) = −
1

r
e−rβx−ϕ(rβy1,...,rβyn), (52)

for some function ϕ : IRn → IR.

Let ψ be the restriction of ϕ in the no-transaction region. Then equation (51) becomes

1

2

n
∑

i=1

n
∑

j=1

[ρijσiσjzizj(ψzizj
− ψzi

ψzj
)] +

n
∑

i=1

(µiziψzi
)− rψ + (δ − r) = 0. (53)

We conjecture that in this case, there exist four critical functions (instead of numbers, as

in the previous section), y
i
(y−i), y

∗
i
(y−i), ȳ

∗
i (y−i), and ȳi(y−i), where y−i = (y1, ..., yi−1, yi+1, ..., yn),

defining the no-transaction region and the optimal target boundaries. Accordingly, we must

have ∀i = 1, 2, ..., n,

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi − (y∗
i
(y−i)− yi), y1, y2, ..., y

∗
i
(y−i), ..., yn)

for any yi ≤ y
i
(y−i), and

v(x, y1, y2, ..., yi, ..., yn) = v(x− Fi + (1− αi)(yi − ȳ
∗
i (y−i)), y1, y2, ..., ȳ

∗
i (y−i), ..., yn)

for any yi ≥ ȳi(y−i).

22



The optimality of y∗
i
(y−i) and ȳ

∗
i (y−i) implies that

vyi
(x, y1, y2, ..., y

∗
i
(y−i), ..., yn) = vx(x, y1, y2, ..., y

∗
i
(y−i), ..., yn)

and

vyi
(x, y1, y2, ..., ȳ

∗
i (y−i), ..., yn) = (1− αi)vx(x, y1, y2, ..., ȳ

∗
i (y−i), ..., yn),

for any i = 1, 2, ..., n.

Plugging equation (52) into the boundary conditions and using the C1 property of v,

we obtain the following eight boundary conditions:

ψ(z1, ..., zi(z−i), ..., zn) = Ci1(z−i) + zi(z−i), (54)

ψzi
(z1, ..., zi(z−i), ..., zn) = 1, (55)

ψzi
(z1, ..., z

∗
i (z−i), ..., zn) = 1, (56)

ψzi
(z1, ..., z̄i(z−i), ..., zn) = 1− αi, (57)

ψzi
(z1, ..., z̄

∗
i (z−i), ..., zn) = 1− αi, (58)

ψ(z1, ..., z̄i(z−i), ..., zn) = Ci2(z−i) + (1− αi)z̄i(z−i), (59)

ψ(z1, ..., z
∗
i (z−i), ..., zn) = Ci1(z−i) + rβFi + z∗i (z−i) (60)

and

ψ(z1, ..., z̄
∗
i (z−i), ..., zn) = Ci2(z−i) + rβFi + (1− αi)z̄

∗
i (z−i), (61)

for i = 1, 2, ..., n, where z−i = (z1, ..., zi−1, zi+1, ..., zn), zi = rβy
i
, z∗i = rβy∗

i
, z̄∗i = rβȳ∗i ,

and z̄i = rβȳi. We then need to solve for zi, z
∗
i , z̄

∗
i , z̄i, Ci1 and Ci2 for all i, which are all

functions of z−i. This n-dimensional nonlinear PDE with 4n free boundaries is difficult to

solve even numerically, especially when n is large. To get some idea on how correlation

affects the no-transaction region and to see if the uncorrelated return case provides some

useful insights into the correlated case, we use Algorithm 3 described in Appendix B, which

is essentially the Projection Method introduced by Judd (1999), to numerically solve the

two-asset case with a correlation of ρ12 = 0.1. Similar to Leland (2000), we assume that the

four no-transaction boundaries and the four target boundaries (see Figure 5) are all straight

lines.12 Although this linearity has already significantly simplified the computation, we still
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need to optimally choose 16 + (m + 1)(m + 2)/2 constants to minimize a test function,

where m is the order of the series solution in the Projection Method. When the correlation

is small, an order of two is generally sufficient (m = 2), which means we need to minimize

over 22 constants. As n and m grow, the number of constants we need to minimize over

grows quickly. In general, one needs to minimize over n2n+1+
∑m
j=0

(n+j−1)!
j!(n−1)! (which is equal

to 796 when n = 6,m = 2) constants. This illustrates the extreme difficulty of computing

the optimal boundaries in the correlated return case when n is large. Fortunately, when

the correlation is small, as Figure 8 suggests, the solution to the uncorrelated return case

provides a reasonable estimate of the optimal boundaries.Figure 8

Here
→

In Figure 8, we present the no-transaction region and the target boundaries for a two-

stock example with ten percent correlation.13 The dashed lines show the boundaries when

the correlation is zero. This figure suggests that the boundaries for the uncorrelated return

case are close to those of the correlated case. In addition, all the boundaries are negatively

sloped. This is because in the presence of positive correlation, the two stocks have substi-

tution effects for each other. Furthermore, compared to the boundaries in the uncorrelated

return case, all the boundaries in the correlated return case move southwest respectively.

This suggests that in the presence of positive correlation, one tends to invest less in each

stock. This is because the diversification benefit of a stock is smaller when its return is

correlated with another stock.

VII. Analysis of the Optimal Policy

One of the main reasons for investing in multiple risky assets is to reduce portfolio risk

through diversification. There are asset classes that have nearly zero correlations and for

diversification purposes investors may find it efficient to limit their trading to these uncor-

related asset classes. This suggests that from an economic point of view the uncorrelated

return case is an important case to study. Therefore, in this section, we provide some fur-

ther analysis of the optimal trading strategy in the uncorrelated return case. As shown in

Sections III-V, analysis of the optimal policy for multiple stocks can be decomposed into

analysis for individual stocks in this case. We thus (without loss of generality) pick one
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of the stocks and conduct the analysis on this stock. The location of free boundaries, the

sensitivity of these boundaries to changes in risk aversion and volatility, the frequency of

transaction, and the optimal size of a purchase and a sale are all examples of questions we

will address in this section.

A. Optimal Boundaries

A.1 Changes in Risk Aversion

Figure 9 plots the optimal boundaries y, y∗, ȳ∗, and ȳ (the actual amount, instead of

the scaled amount) against the absolute risk aversion coefficient β. As the risk aversion

increases, y, y∗, ȳ∗, and ȳ all decrease. The amount of each purchase and sale also decreases.

The target amounts y∗ and ȳ∗ quickly converge to the Merton line. The pattern of the

boundaries also suggests that, on average, the amount invested in the stock decreases as

the investor becomes more risk averse.Figure 9

Here
→

A.2 Changes in Volatility

Figure 10 plots the optimal boundaries z, z∗, z̄∗, and z̄ against the stock return volatility, σ.

As the volatility increases, z, z∗, z̄∗, and z̄ all decrease. In contrast to the intuition that as

volatility increases, to save transaction costs, the investor would widen the no-transaction

region, the NT region actually shrinks (see Subsection B for the implication on the frequency

of trading). Furthermore, both z∗ and z̄∗ move closer to the Merton line, but the amount

of each transaction is not very sensitive to changes in the volatility.Figure 10

Here
→

A.3 Changes in Expected Return

Figure 11 plots the optimal boundaries z, z∗, z̄∗, and z̄ against the expected stock return

µ. As the expected return increases, z, z∗, z̄∗, and z̄ all increase. Both z and z∗ increase

at a lower rate than the Merton line, while z̄ and z̄∗ increase at a higher rate. This implies

that the no-transaction region widens as the expected return rises. In addition, the size of

each purchase and sale also increases.Figure 11

Here
→
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B. Frequency of Trading

To better understand the optimal transaction policy in the stock, we now analyze the

stochastic behavior of the investment in the stock in this subsection. Within the no-

transaction region, the (scaled) amount in stock z evolves as follows:

dzt = µztdt+ σztdwt.

Now let z0 = z ∈ (z, z̄) be fixed,

τ = inf
{

t ≥ 0 : zt /∈ (z, z̄)
}

denote the time of the next transaction,

Pz(τ <∞) = P
(

τ <∞ | z0 = z
)

denote the conditional probability that τ is finite, and

Ez[τ ] = E
[

τ | z0 = z
]

denote the conditional expectation of τ .

The following proposition states that with positive probability the investor will transact

in the stock, and that the expected time to the next transaction is always finite.

Proposition 2. If 0 < z < z̄ < ∞, then Pz(τ < ∞) = 1 and Ez[τ ] < ∞ for all z ∈ (z, z̄).

Moreover, both boundaries of the no-transaction region, z and z̄, can be reached with positive

probability.

Proof. This follows immediately from the propositions in Section 5.5 of Karatzas and

Shreve (1988).

Since for the case in which 0 < z < z̄ < ∞ both boundaries can be reached in finite

expected time, we can compute a set of measures of trading frequency; e.g., expected time

to the next trade, expected time to the next sale after a purchase, and so on. Let

τs = inf
{

t ≥ 0 : zt = z̄
}

and τb = inf
{

t ≥ 0 : zt = z
}
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represent the first time zt reaches the sell boundary z̄ and the buy boundary z of the

no-transaction region, respectively. Let

Ez[τs] = E
[

τs | z0 = z
]

and Ez[τb] = E
[

τb | z0 = z
]

denote the conditional expectations of τs and τb, respectively.

Letting T (z) = Ez[τs] and applying Itô’s lemma, we find that T satisfies the following

differential equation (cf. Karlin and Taylor (1981, p.192)):

1

2
σ2z2T ′′ + µzT ′ + 1 = 0. (62)

For the boundary conditions, first we note that obviously T (z̄) = 0. Since the transaction

policy is to jump to z∗ from z as soon as z is reached, we must have the second boundary

condition T (z) = T (z∗). Solving the above ODE (62) subject to these two boundary

conditions and following a similar procedure for Ez[τb], we have the following result.

Proposition 3. Suppose 0 < z < z̄ <∞. Then

Ez[τs] =











log(z̄/z)(z∗k−zk)−log(z∗/z)(z̄k−zk)

(µ− 1
2
σ2)(z∗k−zk)

if µ 6= 1
2σ

2

1
σ2 log(

z̄
z ) log(

z̄z
z∗z ) if µ = 1

2σ
2

and

Ez[τb] =











log(z/z)(z̄∗k−z̄k)−log(z̄∗/z̄)(zk−zk)

(µ− 1
2
σ2)(z̄∗k−z̄k)

if µ 6= 1
2σ

2

1
σ2 log(

z
z ) log(

zz
z̄∗z̄ ) if µ = 1

2σ
2,

where

k = 1−
2µ

σ2
. (63)

Figure 12 plots the expected time to the next sale after a sale and the expected time

to the next purchase after a purchase against the proportional transaction cost rate. When

α = 0.01, on average, it takes about 1.2 years from sell to sell and about 2.5 years from

buy to buy. As the transaction costs increase, the transaction frequency decreases and the

difference between the expected time from buy to buy and the expected time from sell to

sell also becomes greater.Figure 12

Here
→

A wealth of literature exists on stock return predictability (e.g., Kandel and Stambaugh

(1996), Barberis (2000), Xia (2001)). Generally, it is found that incorporating predictability
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would significantly increase the welfare of an investor, even in the presence of parameter

uncertainty. However, most of these studies do not take transaction costs into account. The

large deviation of trading policy in the presence of transaction costs from optimal policy in

the absence of transaction costs implies, as found in the above analysis, a very low frequency

of trading. This infrequency of trading seems to suggest that the gain from incorporating

predictability would be significantly decreased if transaction costs were considered. We will

return to this point later. This finding of low trading frequency in the presence of transaction

costs also has some implications for models of trading volume. Since transaction costs have

dramatic effects on both trading frequency and trading size, to explain the observed trading

volume, it seems that one has to consider transaction costs in addition to other standard

factors considered in the literature (e.g., Admati and Pfleiderer (1988) and Wang (1994))

such as information asymmetry and heterogeneous beliefs.

Figures 13, 14, and 15 plot the expected time to the next sale after a sale and the

expected time to the next purchase after a purchase against the absolute risk aversion

coefficient β, stock return volatility σ and the expected return µ, respectively. As the

investor becomes more risk averse, the frequency of trading decreases. The expected time

between purchases increases faster than the expected time between sales. It should be

noted, however, that although the no-transaction region narrows as β increases, the trading

frequency decreases. This inverse correlation suggests that trading frequency not only

depends on the width of the no-transaction region but also on the location of the NT

region.

Figure 13

Figure 14

Figure 15

Here

→

As the stock return volatility increases, while the expected time between sales increases,

the expected time between purchases decreases. This finding seems counterintuitive, be-

cause as the volatility increases it seems probable that the investor would widen the no-

transaction region to decrease the trading frequency so as to save on the transaction costs.

However, the investor’s response is more sophisticated than simply saving transaction costs.

As the volatility increases, the risk increases. So, on average, the investor holds less in the

stock (as suggested by Figure 10 and can be verified using the measure developed in the

next subsection). Over time then, the investor needs to sell less frequently to finance current

consumption and actually needs to buy stock more often to finance future consumption.
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As the expected stock return increases, both the expected time between purchases and

the expected time between sales decrease, but the expected time between sales decreases

faster. Again, it should be noted that the frequency of transaction is not determined only

by the width of the no-transaction region (Figure 11 shows that the region widens as µ

grows). With the risk premium increasing from five percent to nine percent, the expected

time between sales reduces from 1.4 years to about seven months.

C. Average Amount Invested in Stock

In this subsection, we compute a measure of the average amount the investor would opti-

mally hold in the risky asset. When 0 < z < z̄ < ∞, the expected time to reach either

boundary is finite; therefore, it follows that z is a positively recurrent process. Let k be as

defined in equation (63) and

G(x, ξ) =











2(xk − zk)(z̄k − ξk)ξ−1−k/[σ2(z̄k − zk)] if z ≤ x ≤ ξ ≤ z̄

2(z̄k − xk)(ξk − zk)ξ−1−k/[σ2(z̄k − zk)] if z ≤ ξ ≤ x ≤ z̄

be the Green function of z inside the no-transaction region. We focus on the case with both

fixed and proportional costs. Then

f(z) =
(z̄k − z̄∗k)G(z∗, z) + (z∗k − zk)G(z̄∗, z)

∫ z̄
z ((z̄

k − z̄∗k)G(z∗, η) + (z∗k − zk)G(z̄∗, η))dη

is the stationary (or steady-state) probability density function (cf. Karlin and Taylor (1981),

p. 381).

Figure 16 shows the typical shape of the stationary density function. As expected,

significant mass falls around the optimal targets z∗ and z̄∗, because these are the points

to which the investor must return after reaching the transaction boundaries. Since µ > 0,

there is greater mass around z̄∗ than around z∗.Figure 16

Here
→

Using the stationary distribution, we can compute the average amount invested in the

stock in the steady state (as t approaches ∞). Figure 17 shows the steady-state average

amount invested in the stock as a function of the proportional transaction cost rate α.

Surprisingly, the average amount invested in the stock increases as the transaction costs
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increase. As transaction costs increase, to save on such costs, the investor widens the no-

transaction region. The tension occurs between investing more on average versus transacting

more often to keep a lower average but paying higher transaction costs. In this case, saving

transaction costs is dominant. Figure 18 shows the steady-state average amount invested in

the stock as a function of the fixed transaction cost F . Again, as transaction costs increase,

the average amount increases. However, the increase in the average amount as the fixed

cost increases from $0 to $30 is small compared to that shown in Figure 17, because the

fixed cost is small compared to the actual transaction size of $22,000 when F = $30. That

the steady state average amount invested in the stock increases as transaction costs increase

suggests that to induce an investor to hold the same average amount as before, one needs

to make the stock less attractive, for example by lowering the expected return of the stock.

Figure 19 shows the expected returns that induce the investor to hold the same steady state

average amount as that in the absence of transaction costs as a function of the proportional

cost rate α when the fixed cost is $5. Consistent with the above analysis, the expected

return of the stock that implies the same average amount in stock is inversely related to

the transaction costs. In addition, this relationship is almost linear in this range of the

transaction costs.

Figure 17

Figure 18

Figure 19

Here

→

As already shown, in the presence of transaction costs, optimal trading occurs infre-

quently. To measure how much the investor loses from trading at a higher frequency than

the optimal one and to be consistent with the convention of using extra risk premium to

measure utility gain from incorporating predictability, we compute the extra risk premium

required to compensate the investor for trading more frequently than the optimal trading

strategy. Specifically, we suppose that the investor shrinks the optimal buy boundary and

sell boundary symmetrically about the mid-point of the no-transaction region, but then

chooses optimally the buy and sell targets. This change would imply an increase in trading

frequency and a loss of utility. Figure 20 plots the extra risk premium required against

the average time between transactions in the steady state. This figure shows that with a

monthly trading frequency, the investor would need about 25 basis points extra premium.

With a daily trading frequency, the extra premium required would be as high as 300 basis

points. These numbers seem to suggest that the importance of predictability as reported in
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the literature would be significantly diminished if transaction costs were taken into account.

Figure 20

Here
→

VIII. Conclusions and Extensions

In this paper we consider the optimal intertemporal consumption and investment policy of

an infinite-horizon CARA investor, who faces both fixed and proportional transaction costs

in trading multiple risky assets. We find that in the presence of even small transaction costs,

trading in the risky assets becomes infrequent and increasing trading frequency beyond the

optimal frequency results in significant utility loss. These findings suggest that transaction

costs are an important factor in affecting trading volume, and the importance of stock return

predictability as reported in the literature would be significantly diminished if transaction

costs were taken into account. In addition, we find that conditional on investment, as

transaction costs increase, the average amount invested in each risky asset increases.

Compared to the existing literature, this paper provides a simple model that makes it

feasible to compute the optimal trading strategies when there are large number of risky as-

sets subject to both fixed and proportional transaction costs. Incorporating more realistic

market features such as stochastic investment opportunities, portfolio constraints, exoge-

nous income, correlated asset returns, and incomplete information would be economically

interesting but mathematically challenging for future research.
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Appendix A

In the first part of this appendix, we provide a proof of Theorem 4. The proofs of

Theorem 2 and Theorem 3 are special cases and are thus omitted. Since the investor’s

problem involves continuous consumption and discrete stock transactions at stopping times,

this optimal control problem belongs to the class of combined stochastic control as studied

by Brekke and Øksendal (1998).14 In contrast to Brekke and Øksendal (1998), the investor

in this model has an infinite horizon. The proof in this appendix is a variation of the

proofs in Brekke and Øksendal (1998) and Korn (1998). We first introduce some notation

and terminology, then provide a modified version of the verification theorems of Brekke and

Øksendal (1998) and Korn (1998) and finally show that the conditions provided in Theorem

4 satisfy the conditions in this verification theorem.

Definition 1 An impulse control χ = {(τj , ζ
j), j ∈ IN} is a sequence of trading times τj

and trading amounts ζj = dIτj − dDτj ∈ IRn such that ∀j ∈ IN,

1. 0 ≤ τj ≤ τj+1 a.s.,

2. τj is a stopping time and ζj is Fτj measurable, and

3. P (limn→∞ τn ≤ K) = 0, ∀K ≥ 0,

where IN denotes the set of natural numbers, and I and D are the cumulative purchase and

sale processes respectively.

Definition 2 For a given impulse control χ and a consumption policy c, the pair ξ = (χ, c)

is called a combined stochastic control.

Definition 3 A combined stochastic control ξ = (χ, c) is admissible if the implied processes

(I,D) and c form an admissible strategy as defined in the text; i.e., the implied xt and

yt from (2) and (3) satisfy (5). Let W denote the set of admissible combined stochastic

controls.
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Next, we let H denote the space of all measurable functions h : IRn+1 → IR. We define

the maximum operator M : H → H by

Mh(x, y) ≡ sup
ζ∈IRn

\{0}

h
(

x−
n
∑

i=1

(Fi1{ζi 6=0} + ζ+i − (1− αi)ζ
−
i ), y + ζ

)

,

where ζi is the ith element of ζ. For each (x, y) ∈ IRn+1, let ζ̂h(x, y) be such that

Mh(x, y) = h
(

x−
n
∑

i=1

(Fi1{ζ̂h
i
(x,y)6=0} + ζ̂hi (x, y)

+ − (1− αi)ζ̂
h
i (x, y)

−), y + ζ̂h(x, y)
)

. (A1)

For a given consumption policy c, we next define the differential operator Lc by

Lcg(x, y) ≡
1

2
σ2y2gyy + µygy + rxgx − cgx − δg,

for all functions g : IRn+1 → IR for which the derivatives involved exist at (x, y). We now

provide a lemma which serves as a verification theorem for solving the investor’s problem.

It provides sufficient conditions under which a combined stochastic control ξ = (χ, c) solves

the investor’s optimal consumption and investment problem, and a given function V is the

value function.

Lemma 1. (Verification Theorem)

(a). Suppose there exists a C1 function V : IRn+1 → IR, which is C2 except over a

Lebesgue measure zero subset of IRn+1, such that

1. LcV (x, y) + u(c) ≤ 0, ∀c ∈ C;

2. V (x, y) ≥MV (x, y);

3.

∀T ∈ [0,∞), E

∫ T

0
|e−δsysVY (xs, ys)|

2ds <∞ (A2)

and

lim
T→∞

E[e−δTV (xT , yT )] = 0, (A3)

for any process (xt, yt) corresponding to an admissible combined stochastic control,

where VY is the n×n diagonal matrix with Vyi
(i = 1, 2, ..., n) as its diagonal elements

and | · | represents the Euclidian norm; and,
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4. {e−δtV (xt, yt)}t≥0 is uniformly integrable.

Then

V (x, y) ≥ vξ(x, y), ∀ξ ∈ W, (x, y) ∈ IRn+1, (A4)

where vξ(x, y) is the value function from following ξ.

(b). Define

NT = {(x, y) : V (x, y) >MV (x, y)}.

Suppose in addition to the conditions in part (a), there exists a function ĉ : NT → IR such

that

Lĉ(x,y)V (x, y) + u(ĉ(x, y)) = 0, (A5)

for all (x, y) ∈ NT . Define the impulse control

χ̂ ≡ (τ̂1, τ̂2, ...; ζ̂
1, ζ̂2, ...)

inductively as follows: τ̂0 = 0 and ∀k = 0, 1, 2, ...,

τ̂k+1 = inf{t > τ̂k : (x
(k)
t , y

(k)
t ) /∈ NT}

and

ζ̂k+1 = ζ̂V (x
(k)
t , y

(k)
t ),

where (x
(k)
t , y

(k)
t ) is the result of applying the combined stochastic control

ξ̂k ≡ ((τ̂1, ..., τ̂k; ζ̂
1, ..., ζ̂k), ĉ)

and ζ̂V is as defined in (A1) for V . If ξ̂ ≡ (χ̂, ĉ) is admissible, then

V (x, y) = v(x, y)

and the combined stochastic control ξ∗ = ξ̂ is optimal, where v(x, y) is the value function

defined in (6).

Proof. (a) Assuming that V satisfies the conditions in part (a), we let ξ = (χ, c) ∈ W be

any admissible combined stochastic control, where

χ = (τ1, τ2, ...; ζ
1, ζ2, ...).
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Let T ∈ [0,∞) be fixed. For all k ≥ 0, define

θk = τk ∧ T,

with τ0 = 0 and let (xt, yt) = (xξt , y
ξ
t ). We can then write for every n ∈ IN,

e−δθnV (xθn , yθn)− V (x, y)

=
n
∑

i=1

[e−δθiV (xθ−
i
, yθ−

i
)− e−δθi−1V (xθi−1

, yθi−1
)]

+
n
∑

i=1

1{τi<T}e
−δθi [V (xθi

, yθi
)− V (xθ−

i
, yθ−

i
)]. (A6)

Since yt is a continuous semi-martingale in the stochastic interval [θk, θk+1) and V is C2

except over a Lebesgue measure zero subset of IRn+1 and C1 in IRn+1, Lemma (45.9) (a

generalized version of Itô’s lemma) of Rogers and Williams (2000) applies (see also Korn

(1997)). Therefore, ∀i ∈ IN, we have

e−δθiV (xθ−
i
, yθ−

i
)− e−δθi−1V (xθi−1

, yθi−1
)

=

∫ θi

θi−1

e−δsLcV (xs, ys)ds+

∫ θi

θi−1

e−δsysVY (xs, ys)σdws, (A7)

where σ is a n× n diagonal matrix with σi (i = 1, 2, ..., n) as its elements. By condition 1,

we have

e−δθiV (xθ−
i
, yθ−

i
)− e−δθi−1V (xθi−1

, yθi−1
)

≤ −

∫ θi

θi−1

u(cs, s)ds+

∫ θi

θi−1

e−δsysVY (xs, ys)σdws. (A8)

By condition 2, we have

V (xθi
, yθi

)− V (xθ−
i
, yθ−

i
) ≤ 0. (A9)

Combining (A6)-(A9) and taking expectations, we then get

V (x, y) ≥ E[e−δθnV (xθn , yθn)+
n
∑

i=0

(

∫ θi

θi−1

u(cs, s)ds−

∫ θi

θi−1

e−δsysVY (xs, ys)σdws
)

]. (A10)

By (A2), for any fixed n, we have

E[

∫ θn

0
e−δsysVY (xs, ys)σdws] = 0.
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From condition 3 in Definition 1 and condition 4 in this lemma, we have

lim
n→∞

E[e−δθnV (xθn , yθn)] = E[e−δTV (xT , yT )].

Therefore, taking the limit as n → ∞ in (A10) and using the monotone convergence

theorem, we have

V (x, y) ≥ E[e−δTV (xT , yT )] + E[

∫ T

0
u(cs, s)ds].

Taking the limit as T → ∞ and using (A3) and the monotone convergence theorem, we

obtain

V (x, y) ≥ E[

∫ ∞

0
u(cs, s)ds],

for all ξ ∈ W and thus V (x, y) ≥ vξ(x, y).

(b) By (A5), we have equality (rather than inequality) in (A8). Given the definition of

ξ̂ we also have equality in (A9). Combining this with (A4), we then get

V (x, y) ≥ sup
ξ∈W

vξ(x, y) ≥ vξ̂(x, y) = V (x, y).

Hence V (x, y) = v(x, y) and ξ∗ = ξ̂ is optimal.

Since one of the conditions in the above verification theorem is that ξ̂ is an admissible

combined stochastic control, we next show that the combined stochastic control implied by

the consumption policy and trading strategy specified in Theorem 4 is indeed admissible.

Lemma 2. Let ξ̂ = (χ̂, ĉ) represent the stock trading strategy specified in Theorem 4. Then

ξ̂ is an admissible combined stochastic control.

Proof. Let τj , j ∈ IN denote the time when the investor trades according to the policy

specified in Theorem 4. Since the prescribed stock trading strategy is to trade stock i

whenever yit is outside (yi, ȳi), the trading time is clearly a stopping time with 0 ≤ τj ≤ τj+1

a.s., ∀j ∈ IN. For all j ∈ IN, define

ζ̂ji =























y∗
i
− yiτj if yiτj ≤ y

i

ȳ∗i − yiτj if yiτj ≥ ȳi

0 otherwise.
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Obviously, ζ̂j is adapted to Fτj . Because ∀t ∈ (0,∞), P{zit ∈ [zi, z̄i]} = 1, and zit is

positively recurrent by Proposition 2 for i = 1, 2, ..., n, we find that P (limm→∞ τm ≤ K) =

0, ∀K ≥ 0 and thus condition 3 in Definition 1 is also satisfied. To complete the proof we

now show that (5) is also satisfied. For all t > 0 and m ∈ IN, by (2) and (48), we have

rβxt∧τm = rβx0 −
n
∑

i=1

∫ t∧τm

0
rψi(zis)ds

+
n
∑

i=1

m
∑

j=0

1{τj<t}(−rβFi1{|ζ̂j
i
|>0}

− rβζ̂j+i + (1− αi)rβζ̂
j−
i ),

where ζ̂ji is the ith element of ζ̂j . By (37) and (42)-(44), we find that

−rβFi1{|ζ̂j
i
|>0}

− rβζ̂j+i + (1− αi)rβζ̂
j−
i = ψi(ziτj−)− ψi(ziτj ),

where at time τj > 0: if it is a purchase in ith stock, then ziτj− = zi and ziτj = z∗i ; if it

is a sale then ziτj− = z̄i and ziτj = z̄∗i ; if there is no trade in the stock (i.e., ζ̂ji = 0) then

ziτj− = ziτj . We then have

m
∑

j=0

1{τj<t}(ψi(ziτj−)− ψi(ziτj )) = ψi(zi,0)− ψi(zi,t∧τm)

+
m
∑

j=1

[ψi(zi,t∧τj−)− ψi(zi,t∧τj−1
)].

Since ψi is a solution of (22) subject to (37)-(44) and (22) satisfies the conditions of Corollary

4.1 of Hartman (1964), ϕi(zi) as defined in (23) is C2 except at {zi, z̄i} (a Lebesgue measure

zero set) and C1 at these points. Using the generalized version of Itô’s lemma, we then

obtain

ψi(zi,t∧τj−)− ψi(zi,t∧τj−1
) =

∫ t∧τj−

t∧τj−1

(
1

2
σ2i z

2
isψ

′′
i −

1

2
σ2i z

2
is(ψ

′
i)
2 + µizisψ

′
i)ds

+

∫ t∧τj−

t∧τj−1

[
1

2
σ2i z

2
is(ψ

′
i)
2ds+ σizisψ

′
idwis].

Therefore

rβxt∧τm = rβx0 +
n
∑

i=1

(

ψi(zi,0)− ψi(zi,t∧τm)

+

∫ t∧τm

0
(
1

2
σ2i z

2
isψ

′′
i −

1

2
σ2i z

2
is(ψ

′
i)
2 + µizisψ

′
i − rψi)ds

+

∫ t∧τm

0
[
1

2
σ2i z

2
is(ψ

′
i)
2ds+ σizisψ

′
idwis]

)

.
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By (22), we then have

rβxt∧τm = rβx0 +
n
∑

i=1

(ψi(zi,0)− ψi(zi,t∧τm))− (δ − r)(t ∧ τm)

+
n
∑

i=1

∫ t∧τm

0
[
1

2
σ2i z

2
is(ψ

′
i)
2ds+ σizisψ

′
idwis]. (A11)

Taking the limit as m → ∞ on both sides of (A11), by condition 3 in Definition 1 shown

above, we get

rβxt = rβx0 +
n
∑

i=1

(ψi(zi,0)− ψi(zi,t))− (δ − r)t+
n
∑

i=1

∫ t

0
[
1

2
σ2i z

2
is(ψ

′
i)
2ds+ σizisψ

′
idwis].

By (4) we have ∀t ∈ [0,∞),

e−δt−rβWt = e−rt−rβx0−
∑n

i=1
[ψi(zi,0)−ψi(zi,t)+(1−αi)z

+
it
−z−

it
−Fi1{zit 6=0}]N(t),

where

N(t) = e−
∑n

i=1

∫ t

0
[ 1
2
σ2

i z
2
is(ψ

′
i)

2ds+σizisψ
′
idwis].

Since ∀t ∈ [0,∞), zit, ψi(zit), and ψ
′
i(zit) are all bounded and E[N(t)] = 1, we obtain,

0 ≤ lim
t→∞

E[e−δt−rβWt ] ≤ lim
t→∞

[Ke−rtE(N(t))] = 0,

where K is some finite constant. This shows that the first part of (5) holds, i.e.,

lim
t→∞

E[e−δt−rβWt ] = 0.

In addition, since ∀t ∈ [0,∞), zit and ψi(zit) are both bounded, we have for some finite

constant K1,

e−2δt−2rβWt = e−2rt−2rβx0−2
∑n

i=1
[ψi(zi,0)−ψi(zi,t)+(1−αi)z

+
it
−z−

it
−Fi1{zit 6=0}]N(t)2 < K1e

−2rtN(t)2.

Since ∀t ∈ [0,∞), zit and ψ′i(zit) are also bounded, we obtain E[N(t)2] < eK2t, for some

finite constant K2. Therefore, we have ∀i = 1, 2, ..., n and T ∈ [0,∞),

E[

∫ T

0
|yite

−δt−rβWt |2dt] =
1

rβ
E[

∫ T

0
|zite

−δt−rβWt |2dt] <∞.

This shows that the second part of (5) is also satisfied.

We are now ready to prove Theorem 4.
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Proof of Theorem 4. In this proof, we show that all the conditions in the verification

theorem Lemma 1 are satisfied. First, by Lemma 2, the combined stochastic control pro-

posed in Theorem 4 is admissible. Also, as explained in the proof of Lemma 2, the ϕi’s are

C2 except over a Lebesgue measure zero subset of IR and C1 in IR and thus v(x, y) are C2

except over a Lebesgue measure zero subset of IRn+1 and C1 in IRn+1. Next, we show that

(A2) and (A3) hold with the proposed value function.

First recall that

v(x, y1, ..., yn) = −
1

r
e−rβx−

∑n

i=1
ϕi(rβyi)

and

vyi
(x, y1, ..., yn) = βϕ′ie

−rβx−
∑n

i=1
ϕi(rβyi), ∀i = 1, 2, ..., n.

By (4) we have ∀t ∈ [0,∞),

0 ≤ e−δt−rβxt−rβ
∑n

i=1
(y+

it
−y−

it
) ≤ e−δt−rβxt−rβ

∑n

i=1
[(1−αi)y

+
it
−y−

it
−Fi1{yit 6=0}] = e−δt−rβWt .

(A12)

Taking the expectation and the limit, (5) then directly implies that

lim
t→∞

E[e−δt−rβ(xt+
∑n

i=1
yit)] = 0. (A13)

Since ∀zi < zi, ϕi(zi) = Ci1 + zi and ∀zi, ϕ
′
i(zi) > 0 according to the conditions in the

theorem, we then have

0 ≤ e−δT−rβxT−
∑n

i=1
ϕi(rβyiT ) ≤ e−δT−rβ(xT+

∑n

i=1
yiT )−

∑n

i=1
Ci1 , (A14)

and thus taking the expectation and the limit as T →∞ we have (A3) by (A13); i.e.,

lim
T→∞

E[e−δT v(xT , yT )] = lim
T→∞

−
1

r
E[e−δT−rβxT−

∑n

i=1
ϕi(rβyiT )] = 0. (A15)

The above expression implies that for any fixed t ≥ 0,

E[|e−δtv(xt, yt)|] <∞ (A16)

and thus e−δtv(xt, yt) is in L
1. In addition, (A15) also implies that e−δtv(xt, yt) converges

to 0 in L1. By Theorem 13.7 in Williams (1994), we have that condition 4 in Lemma 1

holds.
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For all T ∈ [0,∞), we then have for some finite constants K1,K2 > 0,

E

∫ T

0
|e−δtytvy(xt, yt)|

2dt = E

∫ T

0
[rβ(

n
∑

i=1

yitϕ
′
i)e
−δtv(xt, yt)]

2dt

< E

∫ T

0
K1

n
∑

i=1

y2it|e
−δtv(xt, yt)|

2dt

< E

∫ T

0
K2

n
∑

i=1

|yite
−δt−rβWt |2dt

< ∞,

where the first inequality stems from the fact that ϕ′i is bounded, the second inequality

follows from (A12) and (A14) and the last inequality follows from (5). Therefore (A2) also

holds. Next, defining

Gv(x, y) ≡
1

2
σ2y2vyy + µyvy + rxvx +

vx
β

log(
vx
β
)− δv −

vx
β

=
(

n
∑

i=1

(
1

2
σ2i z

2
i ϕ
′′
i −

1

2
σ2i z

2
i ϕ
′
i
2
+ µiziϕ

′
i − rϕi) + (δ − r)

)

|v(x, y)|,

we then have for an arbitrary consumption policy c,

Lcv(x, y) + u(c) ≤ max
c

(Lcv(x, y) + u(c)) = Lc
∗
v(x, y) + u(c∗) = Gv(x, y),

where the first equality follows from the optimality of c∗ defined in (48) for a given v(x, y) ,

which is straightforward to verify. By (22) and summing up over i, we then have Gv(x, y) = 0

in NT and thus (A5) is satisfied in NT with ĉ = c∗. By (38) and (45), we must have

ψ′′i (zi) > 0. By (40) and (47), we must have ψ′′i (z̄i) > 0. By (22) and plugging in (37), (38),

(40) and (42) , we then have

−
1

2
σ2i z

2
i + (µi − r)zi − rCi1 +

δ − r

n
≤ 0 (A17)

and

−
1

2
σ2i ((1− αi)z̄i)

2 + (µi − r)(1− αi)z̄i − rCi2 +
δ − r

n
≤ 0, (A18)

for i = 1, 2, ..., n. Equations (A17) and (A18) then, respectively, imply that ∀zi ≤ zi,

−
1

2
σ2i z

2
i + (µi − r)zi − rCi1 +

δ − r

n
≤ 0

and ∀zi ≥ z̄i,

−
1

2
σ2i ((1− αi)zi)

2 + (µi − r)(1− αi)zi − rCi2 +
δ − r

n
≤ 0,
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for i = 1, 2, ..., n. Summing over i and noting the fact that ϕ′′i (zi) = 0 outside NT, we then

have Lcv(x, y) + u(c) ≤ Gv(x, y) ≤ 0 outside the NT region. Therefore, condition 1 in part

(a) also holds. Next, we show that condition 2 in part (a) is true.

First,

Mv(x, y) = −
1

r
e−rβx−

∑n

i=1
νi(yi), (A19)

where

νi(yi) ≡ sup
ζi

(ϕi(rβ(yi + ζi)) + (1− αi)rβζ
−
i − rβζ

+
i − rβFi1{ζi 6=0}),

where ζi 6= 0 for at least one i. Conditional on a trade, by (45)-(47), we have

νi(yi) =























ψi(rβy
∗
i
)− rβ(y∗

i
− yi)− rβFi if yi < y∗

i

ψi(rβyi)− rβFi if y∗
i
≤ yi ≤ ȳ∗i

ψi(rβȳ
∗
i ) + rβ(1− αi)(yi − ȳ

∗
i )− rβFi if yi > ȳ∗i .

(A20)

By (43) and (44), we find that (A20) becomes

νi(yi) =























Ci1 + rβyi if yi < y∗
i

ψi(rβyi)− rβFi if y∗
i
≤ yi ≤ ȳ∗i

Ci2 + (1− αi)rβyi if yi > ȳ∗i .

(A21)

By (45) and ψi(rβyi) = Ci1+ rβy
i
, we have ∀yi ∈ (y

i
, y∗
i
), ψi(rβyi) > Ci1+ rβyi. Similarly,

by (47) and ψi(rβȳi) = Ci2+(1−αi)rβȳi, we have ∀yi ∈ (ȳ∗i , ȳi), ψi(rβyi) > Ci2+(1−αi)rβyi.

Combined with (A19) and (A21), this implies that in NT

v(x, y) >Mv(x, y).

For any stock i that is in the buy region of this stock, i.e., yi ≤ y
i
, ϕi(rβyi) = Ci1 + rβyi

by (23). Similarly, for any stock i that is in the sell region of this stock, i.e., yi ≥ ȳi,

ϕi(rβyi) = Ci2 + (1− αi)rβyi. Thus, outside NT, we have

v(x, y) =Mv(x, y).

Therefore condition 2 in part (a) also holds. Finally, we show that if there is a solution to

(22) subject to conditions (37)-(44), then it is unique. We prove by contradiction.

Suppose there are two different optimal combined controls ξ and ξ̂. Clearly, the value

functions associated with these two controls must be identical in IR × IRn for both to be
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optimal. The separability of the value function in ϕi then implies that ∀i = 1, 2, ..., n, ϕi(·)

is identical to ϕ̂i(·) (and thus Ci1 = Ĉi1 and Ci2 = Ĉi2), where ϕi(·) and ϕ̂i(·) are associated

with ξ and ξ̂, respectively. Since the optimal consumption policy is completely determined

by the value function, it must be also identical for any given xt and yt. Therefore, the

difference in ξ and ξ̂ must come from the difference in the optimal stock trading policy (for

at least one stock). Without loss of generality, we suppose for stock k between 1 and n,

there are two different optimal policies {zk, z
∗
k, z̄

∗
k, z̄k} and {ẑk, ẑ

∗
k, ˆ̄z

∗
k, ˆ̄zk}. Without loss of

generality, we suppose zk > a > ẑk, where a is a constant such that ẑk < a < ẑ∗k. By (37),

we have ψ′k(a) = 1. On the other hand, by (45), we have ψ̂′k(a) > 1, which contradicts

the fact that ϕk(·) is identical to ϕ̂k(·). Therefore, the solution of the conjectured form is

unique. This completes the proof of Theorem 4.

Proof of Proposition 1. Differentiating (22) once, we obtain

1

2
σ2i z

2
i ψ
′′′
i + (σ2i zi − σ

2
i z

2
i ψ
′
i + µizi)ψ

′′
i − σ

2
i ziψ

′
i
2
+ (µi − r)ψ

′
i = 0.

By (38) and (39), we have

ψ′i(zi) = ψ′i(z
∗
i ) = 1.

This implies that there must exist a ẑi ∈ (zi, z
∗
i ) such that ψ′′i (ẑi) = 0 and ψ′′′i (ẑi) < 0.

Otherwise, at any point z̃i such that ψ′′i (z̃i) = 0 we would have ψ′i(z̃i) < 1, contradicting

(45). We therefore have

−σ2i ẑiψ
′
i
2
+ (µi − r)ψ

′
i > 0.

This implies
ẑi
rβ

<
µi − r

rβσ2i ψ
′
i

<
µi − r

rβσ2i
= yMi .

Since zi < ẑi and yi(αi, Fi) =
zi

rβ , the first inequality in (49) must hold. Similarly, by (40),

(41) and (47), the second inequality in (49) must also hold. Next, we show that (50) holds.

We let z̃i = zi(αi, Fi) and zi = zi(αi, 0). Similar to (15)-(17), we have ψi(zi) = Ci1+ zi,

ψ′i(zi) = 1, and ψ′′i (zi) = 0. By (22), this implies that

−
1

2
σ2i z

2
i + (µi − r)zi − rCi1 +

δ − r

n
= 0. (A22)
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By (37) and (38), we have ψ̃′i(z̃i) = 1 and ψ̃i(z̃i) = C̃i1 + z̃i. By (45), we then have

ψ̃′′i (z̃i) > 0. By (22), we then have

−
1

2
σ2i z̃

2
i + (µi − r)z̃i − rC̃i1 +

δ − r

n
< 0. (A23)

Given a zi < min(zi, z̃i), we have ψ̃i(zi) = C̃i1 + zi and ψi(zi) = Ci1 + zi by the boundary

conditions. Because an increase in the fixed cost from zero to Fi > 0 decreases the value

function for any given zi, we then must have Ci1 > C̃i1. Combining this observation with

(A22) and (A23), we then have

0 < −
1

2
σ2i (z

2
i − z̃

2
i ) + (µi − r)(zi − z̃i)− r(Ci1 − C̃i1)

< (−
1

2
σ2i (zi + z̃i) + (µi − r))(zi − z̃i). (A24)

By the first inequality of (49), we have zi <
µi−r
σ2

i

and z̃i <
µi−r
σ2

i

. Inequality (A24) then

implies the first inequality of (50). Similarly, using the boundary conditions at the sell

boundary and the second inequality of (49), we find that the second inequality of (50)

holds.
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Appendix B

In this appendix, we provide the solution algorithms for solving the free-boundary prob-

lems.

Algorithm 1: When there are only proportional costs.

1. Define a test function q : IR+ → IR+ as follows: for a given candidate zi, solve the

ODE (22) subject to equation (16) and

ψ(zi) =
−1

2σ
2
i z

2
i + µizi + (δ − r)

r
,

which is obtained from equation (22) evaluated at zi using equations (16) and (17);

then solve equation (20) for z̄. If there is no z̄ satisfying equation (20), set q equal to

an arbitrarily large positive number, such as ten. If there is a z̄ satisfying equation

(20), set q equal to (1− αi − ψ
′
i(z̄i))

2.

2. Use a standard minimization algorithm to find the optimal zi ∈ [0, rβyMi ] that mini-

mizes q.15

Algorithm 2: When there are both fixed and proportional costs.

1. Define a test function q : IR2
+ → IR+ as follows: for a candidate zi and a candidate d

for ψ′′i (zi) , solve the ODE (22) subject to condition (38) and

ψ(zi) =
1
2σ

2
i z

2
i d−

1
2σ

2
i z

2
i + µizi + (δ − r)

r
,

which is obtained from ODE (22) evaluated at zi using condition (38); then solve

conditions (39)-(41) for z∗i , z̄
∗
i and z̄i respectively. If there is no solution for z∗i , z̄

∗
i

or z̄i, set q equal to an arbitrarily large positive number, such as ten. Otherwise, set

Ci1 = ψi(zi) − zi, Ci2 = ψi(z̄i) − (1 − αi)z̄i, and q equal to [ψi(z
∗
i ) − (Ci1 + rβFi +

z∗i )]
2 + [ψi(z̄

∗
i )− (Ci2 + rβFi + (1− αi)z̄

∗
i )]

2.
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2. Use a standard minimization algorithm to find the optimal zi ∈ [0, rβyMi ] and d > 0

that minimize q, whose minimum theoretical value is zero at the optimal solution.

Algorithm 3: When asset returns are correlated.

To save space, we only describe the algorithm for the two-stock case. For the general

case of n stocks, the procedure is similar. This algorithm is an application of the Projection

Method proposed by Judd (1999) to our problem. We thus only provide the main steps in

applying this method here. For details and its theoretical foundation, we refer readers to

Judd (1999). Let m = 0 and ẑi, i = 1, 2, ..., 16, denote the coordinates of the eight corners

of the no-transaction and target boundaries (e.g., points “A”,“B”, “C”, “D”, “a”, “b”, “c”,

and “d” in Figure 5).

1. Set m = m+ 1. Let the approximation function be

ψ̃m(z1, z2) =
m
∑

i=0

m−i
∑

j=0

aijHi(z1)Hj(z2),

where the Hi(.) is the Hermite function of order i and coefficients aij are to be deter-

mined.

2. Integrate the left hand side of the PDE (53) over the no-transaction region NT using

ψ̃m(z1, z2) in place of ψ(z1, z2). Denote this value as d1.

3. Next, reduce the four boundary conditions (54) and (59)-(61) to two conditions by

eliminating Ci1 and Ci2. Use ψ̃m(z1, z2) in place of ψ(z1, z2) to compute the difference

between the left hand side value and the right hand side value of each of the resulting

six boundary conditions ((55)-(58) plus the newly obtained two conditions) for each

stock. Denote these differences (six for each stock) as dj , j = 1, 2, ..., 12.

4. Then define the sum-of-squares test function qm =
∑13
i=1 d

2
i .

5. Finally, use standard optimization procedure to minimize qm over aij , i+ j ≤ m, 0 ≤

i, j and ẑi, i = 1, 2, ..., 16. Note that qm is a polynomial function of aij ’s.

6. Repeat Steps 1-5 until both qm and qm+1−qm are smaller than a preset approximation

error tolerance level.
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Footnotes

1. In contrast to Leland (2000), the form and the magnitude of the targets in this paper

are endogenously derived.

2. I thank the referee for pointing out the relevance of transaction costs to the pre-

dictability and trading volume literature.

3. We do impose portfolio constraints to rule out any arbitrage opportunities.

4. It should also be noted that it is without loss of generality to represent the proportional

transaction cost this way instead of having proportional costs for both sales and

purchases, because one can always normalize the latter representation to obtain the

former.

5. It is straightforward to extend this analysis to the case where the fixed cost for a

purchase is different from the one for a sale.

6. When µi < r, the investor shorts the stock. This analysis is symmetric to the case

analyzed in this paper. The fact that only one element of the Brownian motion

appears in each stock return equation implies that the stock returns are assumed to

be uncorrelated. Some discussion of the correlated return case will be provided later.

7. Mathematically speaking, the second part of condition (5) is to ensure that

∫ T
0 yte

−δt−rβWtdwt is a martingale, which is necessary for the Merton solution to be

optimal in the no-transaction-cost case. As shown by Cox and Huang (1989), the

optimal policies with nonnegative wealth and consumption constraints converge to

the policies without these constraints as the initial wealth of the investor increases.

We thus do not impose these constraints to simplify the analysis but focus accordingly

on investors with large initial wealth such as mutual funds and hedge funds.

8. Interested readers may also see Shreve and Soner (1994) and Theorem VIII.4.1 in

Fleming and Soner (1993) for similar proofs for the CRRA case with one stock. Al-

though we have not been able to prove that condition (24) in this theorem and similar

conditions in Theorems 2, 3, and 4 are automatically satisfied by the corresponding
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ϕi, we strongly suspect that this is indeed the case from checking these conditions in

all the cases we examined.

9. Although we cannot show the existence of a solution of the corresponding conjec-

tured forms in Theorems 2-4, the numerical algorithms in Appendix B have always

successfully found one in every numerical case considered in this paper.

10. Both Ci1 and Ci2 can be easily eliminated to reduce the number of equations to six.

We choose not to do so to preserve clarity.

11. In other words, the optimal dollar amount range for a stock would not be constant

but rather would depend on the amounts in other stocks.

12. We find that relaxing this assumption to allow all the boundaries to be piecewise

linear does not yield any noticeable changes in the optimal boundaries.

13. Other numerical examples we investigated yield similar qualitative results.

14. I thank the referee for pointing this out.

15. According to Theorems 2-4, the minimum of q is theoretically zero. Alternative nu-

merical procedures proposed in an earlier version of this paper also work well and

obtain the same solutions. However, this procedure and Algorithm 2 offer the advan-

tage that they need virtually no intervention on the starting points and are thus more

robust for a wide range of parameters.
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Figure Captions

Figure 1. Boundaries as functions of the proportional cost. The graph plots the no-

transaction boundaries z and z̄ against proportional cost α for the following parameters: time

discount rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22,

fixed cost F = 0, and absolution risk aversion coefficient β = 0.001. The thin middle line is the

Merton line.

Figure 2. Boundaries as functions of the fixed cost. The graph plots the optimal boundaries

z, z∗, and z̄ against fixed cost F for the following parameters: time discount rate δ = 0.01, risk free

rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0, and

absolution risk aversion coefficient β = 0.001.

Figure 3. Equivalent fixed costs as functions of the proportional cost. The graph plots

the equivalent fixed cost F against proportional cost α for absolute risk aversion coefficients β =

0.01, β = 0.1, β = 1, and other parameters: time discount rate δ = 0.01, risk free rate r = 0.01,

expected return µ = 0.069, and return volatility σ = 0.22.

Figure 4. First derivative of ϕ. The graph plots ϕ′(z) against z for the following parameters:

time discount rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return volatility

σ = 0.22, proportional cost α = 0.01, fixed cost F = 5, and absolute risk aversion coefficient

β = 0.001.

Figure 5. No-transaction and transaction regions for two stocks. The graph shows the no-

transaction and transaction regions when there are two stocks subject to both fixed and proportional

costs for the following parameters: time discount rate δ = 0.01, risk free rate r = 0.01, stock 1

expected return µ1 = 0.069, stock 2 expected return µ2 = 0.10, stock return volatilities σ1 = σ2 =

0.22, proportional costs α1 = α2 = 0.01, fixed costs F1 = F2 = 5, and absolute risk aversion

coefficient β = 0.001.

Figure 6. Boundaries as functions of the fixed cost. The graph plots the boundaries z, z∗,

z̄∗, and z̄ against fixed cost F for the following parameters: time discount rate δ = 0.01, risk free

rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0, and

absolution risk aversion coefficient β = 0.001. The thin middle line is the Merton line.

Figure 7. Boundaries as functions of the proportional cost. The graph plots the boundaries

z, z∗, z̄∗, and z̄ against proportional cost α for the following parameters: time discount rate δ = 0.01,
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risk free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, fixed cost F = 5, and

absolution risk aversion coefficient β = 0.001. The thin middle line is the Merton line.

Figure 8. No-transaction and target boundaries for two correlated stocks. The graph

shows the no-transaction and target boundaries when there are two correlated stocks subject to

both fixed and proportional costs for the following parameters: time discount rate δ = 0.01, risk

free rate r = 0.01, stock expected returns µ1 = µ2 = 0.069, stock return volatilities σ1 = σ2 = 0.22,

proportional costs α1 = α2 = 0.01, fixed costs F1 = F2 = 5, absolute risk aversion coefficient

β = 0.001, and return correlation ρ12 = 0.1. The dashed lines are corresponding boundaries for the

uncorrelated return case.

Figure 9. Boundaries as functions of the absolute risk aversion coefficient. The graph plots

the optimal boundaries y, y∗, ȳ∗, and ȳ against absolute risk aversion coefficient β for the following

parameters: time discount rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return

volatility σ = 0.22, proportional cost α = 0.01, and fixed cost F = 5.

Figure 10. Boundaries as functions of the return volatility. The graph plots the optimal

boundaries z, z∗,z̄∗, and z̄ against return volatility σ for the following parameters: time discount

rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, proportional cost α = 0.01, fixed

cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 11. Boundaries as functions of the expected return. The graph plots the optimal

boundaries z, z∗, z̄∗, and z̄ against expected return µ for the following parameters: time discount

rate δ = 0.01, risk free rate r = 0.01, return volatility σ = 0.22, proportional cost α = 0.01, fixed

cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 12. Expected time to the next transaction as functions of the proportional cost.

The graph plots the expected time to the next transaction Ez[τs] and Ez[τb] starting from z̄∗ and z∗

respectively against proportional cost α for the following parameters: time discount rate δ = 0.01,

risk free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, fixed cost F = 5, and

absolution risk aversion coefficient β = 0.001.

Figure 13. Expected time to the next transaction as functions of the absolute risk

aversion coefficient. The graph plots the expected time to the next transaction Ez[τs] and Ez[τb]

starting from z̄∗ and z∗ respectively against absolute risk aversion coefficient β for the following

parameters: time discount rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return

volatility σ = 0.22, proportional cost α = 0.01, and fixed cost F = 5.
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Figure 14. Expected time to the next transaction as functions of the return volatility.

The graph plots the expected time to the next transaction Ez[τs] and Ez[τb] starting from z̄∗ and

z∗ respectively against return volatility σ for the following parameters: time discount rate δ = 0.01,

risk free rate r = 0.01, expected return µ = 0.069, proportional cost α = 0.01, fixed cost F = 5, and

absolution risk aversion coefficient β = 0.001..

Figure 15. Expected time to the next transaction as functions of the expected return.

The graph plots the expected time to the next transaction Ez[τs] and Ez[τb] starting from z̄∗ and

z∗ respectively against expected return µ for the following parameters: time discount rate δ = 0.01,

risk free rate r = 0.01, return volatility σ = 0.22, proportional cost α = 0.01, fixed cost F = 5, and

absolution risk aversion coefficient β = 0.001.

Figure 16. The stationary density function of the amount in a stock. The graph plots the

stationary density function f(z) for the following parameters: time discount rate δ = 0.01, risk free

rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional cost α = 0.01,

fixed cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 17. The average amount in a stock as a function of the proportional cost. The

graph plots the average amount in stock against proportional cost α for the following parameters:

time discount rate δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return volatility

σ = 0.22, fixed cost F = 5, and absolution risk aversion coefficient β = 0.001.

Figure 18. The average amount in stock against fixed cost. The graph plots the average

amount in a stock as a function of the fixed cost F for the following parameters: time discount rate

δ = 0.01, risk free rate r = 0.01, expected return µ = 0.069, return volatility σ = 0.22, proportional

cost α = 0.01, and absolution risk aversion coefficient β = 0.001.

Figure 19. The expected return that implies the same average amount in a stock as a

function of the proportional cost. The graph plots an expected return that implies the same

average amount in a stock against proportional cost α for the following parameters: time discount

rate δ = 0.01, risk free rate r = 0.01, return volatility σ = 0.22, fixed cost F = 5, and absolution

risk aversion coefficient β = 0.001.

Figure 20. The required extra risk premium as a function of the average time between

transactions. The graph plots the required extra risk premium against the average time between

transactions for the following parameters: time discount rate δ = 0.01, risk free rate r = 0.01,
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return volatility σ = 0.22, proportional cost α = 0.01, fixed cost F = 5, and absolution risk aversion

coefficient β = 0.001.

55



��� ��� ��� � ��� ��� ��� � ��� �	� ��� 


��� �
�

��� �
�

��� �



��������������� �����������! ��

" #

"#

Figure 1.

$ %'& % $ ( & (�$ ) &
&�* +
%

%,* (
%,* -
%,* .

/10 243�57698�:	;
/

<=

<�>

< =

Figure 2.

?	@ ?,A ?	@ B ?	@ BCA ?	@ D ?	@ D,A ?	@ E
BC?
D,?
E,?
F�?
A,?

G

H

IKJML!N	L!JPORQ LTS�UTV�W�L4X�O

YZ [\
] ^ _
`a

bdc1e

fdg�hji�klnm!oqp o!r

Figure 3.

56



s s4t�s s4t u s4t v s�t w s4t x
y�t zTz�u
y�t zTz4w
y�t z�zT{
y�t zTzT|

s

}

~�� � }n�

}�}�
}� }���

�y�t zTz�y

Figure 4.

�d� � �n� � � �!� � �!� � �!� � �T� � �
�!� �
�T� �
�!� �
�!� �
�

��� �
��� �

���������4�d� �7���R���T���

���������4�n� ���������T���

�9��� �����9������9�������9�����

�9�4� �¡�9��� ��� �9��� �1�¢�9��� �	�

�j�����7£q¤�� �9��� ����£q¤��

¥T¦¢§n¨�©�ª ª'«

¥T¦¢§�¬�­,®�«

¯

¬ °

±
²
³ ´

µ

Figure 5.

57



¶ ·'¸ · ¶ ¹ ¸ ¹�¶ º ¸

·

·,» ¹

·,» ¼

·,» ½

¾
¾1¿ À�Á�Â�Ã9ÄTÅÇÆ

ÈÉqÊ

ÈÉ

È ÊÉ
ÈÉ

Figure 6.

Ë�Ì ËÇÍ Ë�Ì Î Ë�Ì Î�Í Ë�Ì Ï Ë�Ì ÏÇÍ Ë�Ì Ð
Ë�Ì Í
Î

Î,Ì Í
Ï

Ï�Ì Í
Ð ÑÒ

Ñ ÒTÓ

Ô�Õ�Ö�×�Ö�ÕMØ�Ù Ö�Ú�Û1Ü	Ý�ÖTÞ	Ø
ß

Ñ ÓÒ Ñ
Ò

Figure 7.

à4á â ã ãÇá ä ãÇá å ã	á æ

à4á â

ã

ã	á ä

ãÇá å

ã	á æ
çéè�êKë�ì4ínî ì�ï�íRê�ð!ñóò

ç�è7êKë�ì4ídî ì�ï�íRê�ðTñõô

Figure 8.

58



ö�÷ ö�ø ö�÷ ù ö�÷ ùCø ö�÷ ú

ú�ö�ö,ö
ûÇö,ö�ö
ü�ö�ö,ö
ý�ö,ö�ö

þ9ÿ ���������
	���ÿ ��


���������
����������
��1ÿ 
���� �
���

!

Figure 9.

"�# $&% "�# ' "�# '�% "�# (
$
'
(
)
%
*

+-,�.�/
021�35476 8�.�9 6 9 .;:
<

Figure 10.

=�> =@? =�> =�A =�> =�B =5>�C
=5> D

C
C�> D

E
EF> D

GIH7J@K�LNM�K�OQPRK
M2S�TVU

WW5X
WW

Y

YY
X

Y

Z

Figure 11.

59



[N\ [^] [_\ [a` [N\ [^b [N\ [^c [N\ d
]
`
b
c

de[
f5g�h@i�j�k�hml7n oph�q;r�qts�hvuFhNwNq�l7i�j@x�y_j�z^q�n r�x�{;|�h�j@i y�}

~��;������� ��� � ��� �

��� �����5�@� ��� � �5� � �

��i r
��r
i;qtn r
x�j
����r�y�q
�

Figure 12.

�N� �^� �N� ��� �N� �^� �N� �^� �N� �
��� �

�
  � �
�e�

�e��� �
�e�

�   � �
�^�

¡
¢-£ ¤�¥�¦F§�¨
© ¤�£ ª�«

¦F§�¨
©t¬�­@¨p®7£ ¯�¨�°;ª±°t²�¨´³�¨�µN°�®7©�¬
«�¤�¬�¶·°t£ ª�«¹¸;º�¨�¬
© ¤�»

¼I½;¾�¿ÁÀ�Â·Ã Ä ¾ À�Â·Ã

Å7Æ Ç
È�É�Ê�Ë Ë�Ì Ç É Ê Ë Ë

Figure 13.

Í�Î ÏeÐ Í�Î Ñ Í�Î Ñ·Ð Í�Î Ò
Ñ
Ó
Ô
Õ

ÏeÍ
Ï&Ñ

Ö�×�Ø
ÙtÚ�Û
Ø�Ü7Ý Þ±Ø�ß à±ß�á�Ø´âãØ�äNß@Ü7Ù�Ú�å�æ�Ú@ç�ß�Ý à�åéè;ê�Ø@Ú
Ù�æ�ë

ìãØ�ßtí@Ù2åmî�à�ï Ú�ß�Ý ï Ý ß;ê ð

ñ
ò;ó
ôöõ�÷ ø�ù ó õ�÷ ø
ú7û�ü�ýÿþ���� ��� ü þ�� � �

Figure 14.

60



��� ��	 ��� ��
 ��� �
� ��� �

�
�
�
	
�

����������������� �!�#"�$&%

' ()�*$,+�-��/.10 2/�/�43/�#5!�768�)�)��.1$,+*%)9:+����#0 3;%=<4>)��+�$49!?

@�ACB�DFEHG�I I
J B EHG�I I

@*A4B�DLKHM
N J B KHM N

O

Figure 15.

P P�Q4P P�Q R P�Q S P�Q T P�Q U P�Q V

W1Q U
P

P�Q U
R

RXQ U
Y�Z�[!Z#\ ]�^�[*_4`ba8c�^)d�\ Ze`gf#h4i�j

kil i l
il�mil)n

Figure 16.

oXp o�q oXpCr oXp4rsq o1p t oXp t*q oXp ur�p t
r�p u
r�p v
r�p q
r�p w
r�p x
y z!{*|,}�~�{�y����;���:�1� �=���4���!�

��|��;�)�;|4�#� ����}��s�����s�
�

Figure 17.

61



� �s� � � � � ��� � �
��� �������
��� �*���*�
��� �����
��� �������
��� �*�����
��� �������
��� �*�����
��� �����

� �)������ ����¢¡�£;¤�¥)¦;§ ¥/¨�¦C£*©)ª

«;§ ¬!��­¯®°£�±s¦
«

Figure 18.

²X³ ²*´ ²X³�µ ²X³4µ�´ ²X³ ¶ ²X³ ¶*´ ²X³ ·
²X³ ²�´�¸
²X³ ²�´�¹
²X³ ²�¸
²X³ ²�¸�¶
²X³ ²�¸�º
²X³ ²�¸�¸
²X³ ²�¸�¹

»½¼�¾;¿�¾;¼4À#Á ¾;Â�Ã�Ä�Å�¾�Æ�À
Ç

È;É�Ê�Ë�ÌsÍ�Ë*ÎÐÏ8Ë�Í#Ñ�Ò&Ó

Figure 19.

Ô
Õ Ö)Õ ×:Õ Ø�Õ Ù)Õ Ú)Õ
Õ�Û Õ)Õ)Ù
Õ�Û Õ*Ô
Õ�Û Õ*Ô
Ù
Õ�Û Õ�Ö
Õ�Û Õ:Ö!Ù
Õ�Û Õ)×

ÜXÝ:Þ�ß
àXásâ�ãeÝ)ä!â¢å*æ çèâ/é*â�ê ë°â)â�ì�å*ãeÝ�ìsß
Ý!íîê�æ ï�ì�ß

ð�ñ�ê�ãeÝ=ò�æ ß�ó¢ô1ã4â!çgæ õ)ç

Figure 20.

62


