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Lecture 9 
Cochrane Chapter 8 – Conditioning information 
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If xt and mt are iid  Vt, then unconditional expectations are the same as conditional 
expectations. 
 
But this is not always the case. 
 
We could make explicit assumptions about It (difficult).  Instead of modeling conditional 
distributions, we would like to use unconditional moments.  This chapter identifies what 
conditional distributions imply for unconditional moments. 
 
 
 
Conditioning down 
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Law of iterated expectations:  If you take an expected value (EV) using less information 
of an EV using more information, you get back the EV using less information. 
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Multiply the payoffs by an instrument zt 
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Invest in asset according to zt          managed portfolio  e.g. SMB,HML 
 
 
 
Checking the (unconditional) expected price/return of all managed portfolios is sufficient 
to check all the implications of conditioning information. 
 
 
 
So to deal with conditional distributions, add managed portfolios and use unconditional 
moments. 
 
 
A conditional factor model does not imply an unconditional factor model. 
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If sensitivities are time-varying, it is not OK to assume they are constant. 
 
 
 
If a portfolio is MV efficient with respect to a conditional distribution, it does not imply 
that the portfolio is MV efficient unconditionally. 
 
 
 
 
 
 
 
 
 
 

New payoff 

New price 
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Cochrane Chapter 9 – Factor models 
 
 1 1 1' ( ) 't t tm a b f E R α β λ+ + += + ⇔ = +  

 
What characteristics should factors have? 
 

(1) based on economic foundation – e.g. related to consumption 
(2) forecasting variables – predict returns or macro variables 
(3) highly (maybe not completely) unpredictable 

 
 
Classic derivations of CAPM 
 

(1) Consumption CAPM, single period 
(2) Quadratic utility, arbitrary returns, single period 
(3) Negative exponential utility (general utility), normally distributed returns, 

single period 
(4) Quadratic value function/Bellman equation, arbitrary returns, multiperiod 

(dynamic programming) 
(5) Intertemporal CAPM 

 
 
1.  Consumption CAPM 

 
We did this at the end of Penati/Pennacchi’s notes entitled “State Preference 
Theory” 
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2.  Quadratic utility, arbitrary returns 
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 This is a single factor model. 
 
 
3.  Negative exponential utility, normally distributed returns ( ) , 0cu c e α α−= − >        

coefficient of absolute risk aversion 
 
 We looked at some characteristics of portfolios chosen by an investor with constant 

ARA in Penati/Pennacchi’s notes entitled “Risk Aversion and Portfolio Choice”. 
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Amount invested in risky assets independent of wealth. 
 

  

2

( ) cov( , )

'

( )

( )

f m

m f f

m f

m

E R R y R R

where R y R y R

E R R

R

α α

α
σ

− = ∑ =

= +

−
=

 

 
 
4.  Quadratic Bellman equation, multiperiod 
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 you get a quadratic Bellman, so the problem looks like the usual single period 
quadratic utility case. 

 
 
5.  Intertemporal CAPM 
 
 We will do this later – after we go through continuous time mathematics. 
 
 Concerns about these models 
 

(1) conditional or unconditional? 
In general, these are conditional models unless the structure is constant 
through time (e.g. investment opportunity set is iid, utility function is the 
same, etc.). 
 

(2) Does CAPM price options? 
Generally no – applies to assets with normally distributed payoffs.  Options 
on stocks do not have normally distributed returns. 
 
Yes if quadratic utility. 

 
 
 
 
 



Finance 400

A. Penati - G. Pennacchi

Arbitrage Pricing Theory

The notion of arbitrage is simple. It involves the possibility of getting something for nothing

while having no possibility of loss. More specifically, suppose that an asset portfolio can be

constructed without requiring any initial wealth.1 If this zero-net-investment portfolio can

sometimes produce a positive return, but can never produce a negative return, then it represents

an arbitrage: starting from zero wealth, a profit can sometimes be made but a loss can never

occur. A special case of arbitrage would be if this zero-net-investment portfolio produces a

riskless return. If this certain return is positive (negative), an arbitrage is to buy (sell) the

portfolio and reap a riskless profit or “free lunch.” Only if the return was zero would there be

no arbitrage.

An arbitrage opportunity can also be defined in a slightly different context. If a portfolio

that requires a non-zero initial net investment is created such that it earns a certain rate of

return, then this rate of return must equal the current (competitive maket) risk free interest

rate. Otherwise, there would also be an arbitrage opportunity. For example, if the portfolio

required a positive initial investment but earned less than the risk free rate, an arbitrage would

be to (short) sell the portfolio and invest the proceeds at the risk free rate, thereby earning

a riskless profit equal to the difference between the risk free rate and the portfolio’s certain

(lower) rate of return.2

In efficient, competitive, asset markets, it seems reasonable to think that easy profits deriving

from arbitrage opportunities are rare and fleeting. Should an arbitrage opportunity temporarily

exist, then trading by investors to earn this riskless profit will tend to move asset prices in a

direction that eliminates the arbitrage. For example, if a zero-net-investment portfolio produces

1
This would likely involve some borrowing or short selling of assets as well as long positions in assets.

2
Arbitrage defined in this context is really equivalent to the previous definition of arbitrage. For example, if

a portfolio requiring a positive initial investment produces a certain rate of return in excess of the riskless rate,

then an investor should be able to borrow the initial funds needed to create this portfolio and pay an interest

rate on this loan that equals the risk-free interest rate. That the investor should be able to borrow at the riskless

interest rate can be seen from the fact that the portfolio produces a return that is always sufficient to repay the

loan in full, making the borrowing risk-free. Hence, combining this initial borrowing with the non-zero portfolio

investment results in an arbitrage opportunity that requires zero initial wealth.
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a riskless positive return, as investors create (buy) this portfolio, the prices of the assets in the

portfolio will be bid up. The cost of creating the portfolio will then exceed zero. The portfolio’s

cost will rise until it equals the present value of the portfolio’s riskless return, thereby eliminating

the arbitrage opportunity. Hence, in competitive asset markets, it may be reasonable to assume

that equilibrium asset prices are such that no arbitrage opportunities exist. As will be shown,

by assuming the absence of arbitrage, powerful asset pricing results can often be derived.

An early use of the arbitrage principle is the covered interest parity condition in foreign

exchange markets. To illustrate, let F0t be the current (date 0) t-period forward price of one

unit of foreign exchange. What this forward price represents is the dollar price to be paid t

periods in the future for delivery of one unit of foreign exchange t periods in the future. Let S0

be the spot price of foreign exchange, that is, the current (date 0) dollar price of one unit of

foreign currency to be delivered immediately. Also let r0t be the risk free borrowing or lending

rate for dollars over the period 0 to t, and denote as r∗0t the risk free borrowing or lending rate

for the foreign currency over the period 0 to t.3

Next consider setting up the following portfolio which requires zero net wealth. First, let us

sell forward (take a short forward position in) one unit of foreign exchange at price F0t.
4 Since

we are now committed to deliver one unit of foreign exchange at date t, let us also purchase

the present value of one unit of foreign currency, 1/(1 + r∗
0t
)t, and invest it at the foreign risk

free rate, r∗0t. In terms of the domestic currency, this purchase costs S0/(1 + r∗0t)
t, which we

finance by borrowing dollars at the rate r0t.

At date t, our foreign currency investment yields (1+r∗
0t
)t/(1+ r∗

0t
)t = 1 unit of the foreign

currency which we then deliver to satisfy our short position in the forward foreign exchange

contract. For delivering the currency, we receive F0t dollars. But we also now owe from our

dollar borrowing a sum of (1 + r0t)
tS0/(1 + r∗

0t
)t. Thus, our net proceeds are

F0t − (1 + r0t)
t
S0/ (1 + r

∗

0t)
t

3
For example, if the foreign currency is the Japanese yen, r

∗

0t would be the interest rate for a yen-denominated

risk-free investment or loan.
4
Taking a long or short position in a forward contract requires zero initial wealth, as payment and delivery

all occur at the future date t.
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Note that these net proceeds are a certain return, that is, this amount is known at date 0 since

it depends only on prices and riskless rates quoted at date 0. If this amount was positive, then

we should indeed create this portfolio as it represents an arbitrage. If, instead, this amount

was negative, then an arbitrage would be for us to sell this portfolio, that is, we reverse each

trade discussed above (take a long forward position, invest in the domestic currency financed

by borrowing in foreign currency markets). Thus, the only instance in which arbitrage would

not occur would be if the net proceeds were zero, that is,

F0t = S0 (1 + r0t)
t
/ (1 + r

∗

0t)
t

which is referred to as the covered interest parity condition.

Note that the forward exchange rate, F0t, is determined without knowledge of the utility

functions of individuals or their expectations regarding future values of foreign currency. For

this reason, pricing (valuing) assets or contracts by using arguments that rule out the existence

of arbitrage opportunities can be very appealing.

To motivate how arbitrage pricing might apply to a very simple version of the CAPM,

suppose that there is a risk free asset that returns Rf and multiple risky assets. However, it is

assumed that only a single source of (market) risk determines all risky asset returns and that

these returns can be expressed by the linear relationship

˜Ri = ai + bif̃ (1)

where ˜Ri is the return on the ith asset, ai is this asset’s expected return, that is, E[ ˜Ri] = ai.

Further, f̃ is the single risk factor generating all asset returns, where E[f̃ ] = 0, and bi is the

sensitivity of asset i to this risk factor. bi can be viewed as asset i’s beta coefficient. Note that

this is a highly simplified example in that all risky assets are perfectly correlated with each

other.

Now suppose that a portfolio of two assets is constructed, where a proportion of wealth of

w is invested in asset i and the remaining proportion of (1 − w) is invested in asset j. This

portfolio’s return is given by

3



˜Rp = wai + (1− w)aj +wbif̃ + (1−w)bj f̃ (2)

= w(ai − aj) + aj + [w(bi − bj) + bj ] f̃

If the portfolio weights are chosen such that

w∗

=
bj

bj − bi
(3)

then the uncertain (random) component of the portfolio’s return is eliminated. The absence of

arbitrage then requires that Rp = Rf , so that

Rp = w
∗

(ai − aj) + aj = Rf

or

bj(ai − aj)

bj − bi
+ aj = Rf

which implies

ai −Rf

bi
=
aj −Rf

bj
≡ λ (4)

This condition states that the expected return in excess of the risk free rate, per unit of risk,

must be equal for all assets, and we define this ratio as λ. λ is the risk premium per unit of the

factor risk. The denominator, bi, can be interpreted as asset i’s quantity of risk from the single

risk factor, while ai −Rf can be thought of as asset i’s compensation or premium in terms of

excess expected return given to investors for holding asset i. Thus, this no-arbitrage condition

is like a law of one price in that the “price of risk,” λ, which is the premium divided by the

quantity, must be the same for all assets.

Suppose that asset m has the same degree of risk as the factor, that is, bm = 1. Thus,

from the above equilibrium condition λ = am −Rf , or if we interpret asset m as the beta = 1

4



“market” portfolio, then λ = Rm −Rf . In terms of asset i, the equilibrium condition can then

be written as

ai = Rf + biλ (5)

= Rf + bi

(
Rm −Rf

)

which is the CAPM relation. Thus, the CAPM can be derived by assuming there is only a

single linear risk factor and that this risk factor has the same risk as the market portfolio.

Let us now generalize the arbitrage pricing principle to the case of multiple risk factors

and allow individual asset returns to have idiosyncratic components. Thus, let there be k risk

factors and N assets in the economy, where k < N . Let biz be the sensitivity of the i
th
asset

to the zth risk factor, given by ˜fz . Also let ε̃i be the idiosyncratic risk component specific to

asset i, which by definition is independent of the k risk factors, ˜f1,...,f̃k , and the specific risk

component of any other asset j, ε̃j . ε̃i must be independent of the risk factors or else it would

affect all assets, thus not being truly a specific source of risk to just asset i. If ai is the expected

return on asset i, then the return generating process for asset i is given by the linear model

R̃i = ai +
k∑

z=1

bizf̃z + ε̃i (6)

where E [ε̃i] = E

[
f̃z

]
= E [ε̃iε̃j ] = E

[
ε̃if̃z

]
= 0. For simplicity, we will also assume that

E

[
f̃zf̃x

]
= 0, that is, the risk factors are mutually independent. As it turns out, this last

assumption is not important, as a linear transformation of correlated risk factors can always be

found such that they can be redefined as independent risk factors.

Another assumption is that the idiosyncratic risk (variance) for each asset be finite, that is

E

[
ε̃
2

i

]
≡ s

2

i < S
2 (7)

where S2 is some finite number. Finally, one can always normalize each risk factor to have

variance equal to one, so that we will assume E
[
f̃
2

z

]
= 1. Under these assumptions, note that

cov

(
R̃i, f̃z

)
= cov

(
bizf̃z , f̃z

)
= bizcov

(
f̃z , f̃z

)
= biz . Thus, biz is the covariance between the
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return on asset i and factor z.

Let us now define an asymptotic arbitrage opportunity.

Definition: Let a portfolio containing n assets be described by the vector of investment

amounts in each of the n assets, wn ≡ [wn

1 wn
2 ... wn

n ]
′. Consider a sequence of these portfolios

where n is increasing, n = 1, 2, ... . Let σij be the covariance between the returns on assets i

and j. Then an asymptotic arbitrage exists if the following conditions hold:

(A) The portfolio requires zero net investment:

n∑

i=1

w
n

i
= 0

(B) The portfolio return becomes certain as n gets large:

lim
n→∞

n∑

i=1

n∑

j=1

w
n
i w

n
j σij → 0

(C) The portfolio return is always bounded above zero

n∑

j=1

w
n

i ai ≥ δ > 0

We can now state the Arbitrage Pricing Theorem (APT):

Theorem: If no asymptotic arbitrage opportunities exist, then the expected return of asset

i, i = 1, ..., n, will be described by the following linear relation

ai = λ0 +
k∑

z=1

bizλz + νi (∗)

where λ0 is a constant, λz can be interpreted as the risk premium for factor z, z = 1, ..., k, and

the expected return deviations, νi, satisfy

n∑

i=1

νi = 0 (i)

n∑

i=1

bizνi = 0, z = 1, ..., k (ii)
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lim
n→∞

1

n

n∑

i=1

ν
2

i
= 0 (iii)

Note that condition (iii) says that the average squared error (deviation) from the pricing rule

(∗) goes to zero as n becomes large. Thus, as the number of assets increase relative to the

risk factors, expected returns will, on average, become closely approximated by the relation

ai = λ0+
∑

k

z=1 bizλz . Also note that if the economy contains a risk free asset (implying biz = 0,

∀ z), the risk free return will be approximated by λ0.

Proof: For a given number of n assets > k, “run a regression” of the ai’s on the biz’s. In other

words, project the dependent variable vector a = [a1 a2 ... an]
′ on the k explanatory variable

vectors bz = [b1z b2z ... bnz] , z = 1, ..., k. Define νi as the regression residual for observation

i, i = 1, ..., n. Denote λ0 as the regression intercept and λz , z = 1, ..., k, as the estimated

coefficient on explanatory variable z. The regression estimates and residuals must then satisfy

ai = λ0 +

k∑

z=1

bizλz + νi (8)

where by the properties of an orthogonal projection (Ordinary Least Squares regression) the

residuals sum to zero,
∑

n

i=1
νi = 0, and are orthogonal to the regressors,

∑
n

i=1
bizνi = 0,

z = 1, ..., k. Thus, we have shown that (∗), (i), and (ii), can be satisfied. The last, but

most important part of the proof, is to show that (iii) must hold in the absence of asymptotic

arbitrage.

Thus, let us construct an arbitrage portfolio with the following weights

wi =
νi√∑
n

i=1 ν
2

i n

(9)

so that greater weights are given to assets having the greatest expected return deviation. The

total arbitrage portfolio return is given by

R̃p =
1√∑n
i=1 ν

2

i n

[
n∑

i=1

νiR̃i

]
=

1√∑n
i=1 ν

2

i n

[
n∑

i=1

νi

(
ai +

k∑
z=1

biz f̃z + ε̃i

)]
(10)

Since
∑n

i=1 bizνi = 0, z = 1, ..., k, this equals
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R̃p =
1√∑n
i=1 ν

2

i n

[
n∑

i=1

νi (ai + ε̃i)

]
(11)

Let us calculate this portfolio’s mean and variance. Taking expectations, we obtain

E

[
R̃p

]
=

1√∑
n

i=1 ν
2

i
n

[
n∑

i=1

νiai

]
(12)

since E[ε̃i] = 0. Substituting in for ai = λ0 +
∑

k

z=1
bizλz + νi, we have

E

[
R̃p

]
=

1√∑
n

i=1 ν
2

i
n

[
λ0

n∑
i=1

νi +

k∑
z=1

(
λz

n∑
i=1

νibiz

)
+

n∑
i=1

ν
2

i

]
(13)

and since
∑

n

i=1
νi = 0 and

∑
n

i=1
νibiz = 0, this simplifies to

E

[
R̃p

]
=

1√∑
n

i=1
ν
2

i
n

n∑
i=1

ν
2

i =

√√√√ 1

n

n∑
i=1

ν
2

i (14)

To calculate the portfolio’s variance, start by subtracting (12) from (11)

˜Rp −E

[
R̃p

]
=

1√∑
n

i=1 ν
2

i n

[
n∑

i=1

νiε̃i

]
(15)

Then because E[ε̃iε̃j ] = 0 for i �= j and E[ε̃2i ] = s
2

i , the portfolio variance is

E

[(
˜Rp −E

[
˜Rp

])
2
]
=

∑
n

i=1 ν
2

i
s
2

i

n
∑

n

i=1 ν
2

i

<

∑
n

i=1 ν
2

i
S
2

n
∑

n

i=1 ν
2

i

=
S
2

n
(16)

Thus, as n becomes large (n → ∞), the variance of the portfolio goes to zero, that is, the

expected return on the portfolio becomes certain. This implies that in the limit the actual

return equals the expected return in (14)

lim

n→∞

˜Rp = E

[
R̃p

]
=

√√√√ 1
n

n∑
i=1

ν2
i

(17)

and so if there are no asymptotic arbitrage opportunities, this certain return on the portfolio

must equal zero, that is,

8



√√√√ 1
n

n∑
i=1

ν2
i
= 0 (18)

which is condition (iii). Q.E.D.

Note that the APT can be viewed as a multi-beta generalization of CAPM. However, whereas

CAPM says that its single beta should be the sensitivity of an asset’s return to that of the

market portfolio, APT gives no guidance as to what are the economy’s multiple underlying

risk-factors. Empirical researchers have tended to select risk factors based on those factors

that provide the “best fit” to historical asset returns. We will see another multi-beta asset

pricing model, namely Merton’s Intertemporal CAPM, which is derived from an intertemporal

consumer-investor optimization problem. However, that model predicts that the multiple betas

are not likely to remain constant through time, which would cause significant difficulties when

attempting to estimate betas from historical data.
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APT – Cochrane Chapter 9 
 
APT starts with a statistical characterization of outcomes/payoffs/returns.  This 
effectively places restrictions on the structure of the covariance matrix. 
 
 e.g.  2cov( , )i j i j mr r β β σ=  

 
Alternatively, you can start with the investor’s utility function and ask what 
variables/factors drive marginal utility. 
 
The law of one price (no arbitrage condition) is very powerful when pricing redundant 
assets, but if you want to price a new non-redundant asset (i.e. one that has sensitivity to a 
“new” factor), the APT will not help you. 
 
 
Exact factor model – no residuals 
Approximate factor model – includes residuals 
 
 
If the residuals are small or idiosyncratic, can the price of an individual asset be very 
different from the price predicted by APT? 
 
 In general, yes.  It depends on cov( , ).im ε   See figure 17. 

 
How do you get from the approximate to the exact factor model? 
  




