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Lecture 4 
Asset Pricing Kernels 

From last lecture: 
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m is a measure of aggregate discomfort 
bad states           high m      ;     good states           low m 
 
If x is high when m is high         high P          low E(r) 
 
If x is low when m is high          low P           high E(r)   (risky asset) 
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Each asset-pricing model corresponds to different choices of m. 

- We have not assumed complete markets. 
- We have not assumed representative investor. 
- We have not restricted the payoff distributions or the form of the utility function. 

- We are not restricted to a one-period model  t
0 t

t=0

E [ β u(c )]
∞

∑  

- Investors can have non-marketable assets (e.g. human capital). 
 
 

Appropriate risk-adjusted rate 
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What affects how Rf is set in equilibrium? 
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If   is high, then investor prefers smooth consumption more. When 

consumption growth is volatile, investor wants to smooth consumption
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 he is more willing to save (precautionary savings).
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Risk correction to price 
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payoff covaries positively with consumption  low p.

This asset won't help you smooth consumption, so it looks risky.

Risk correction to expected returns
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If an asset's return covaries positively with consumption, it 

covaries negatively with m, so E(R) > R .
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Risk-neutral valuation 

Risk adjustment 
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Idiosyncratic risk 
 
 Let R be very volatile but still have cov(m,R) = 0.  
 Then E(R) = Rf          no risk adjustment. 
 Only systematic risk is priced. 
 What matters is the projection of R onto m. 
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the factor is the pricing kernel

 is the price of  risk

Is  + or - ?  What about ?

Mean-variance (efficient) frontier
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  is asset i’s Sharpe ratio.  This relation is used to construct the Hansen-Jaganathan 

bound, a region of permissible values for the moments of m. 
 

• gives a region where stocks can be 
 

                E(r) 
 
 
 
 
 
 Rf 
 
 
 
 
                σ(R) 
 
 
ρm,R

i  captures the degree of systematic risk. 
 
If ρm,R

i = -1 , asset is perfectly negatively correlated with m and perfectly positively 
correlated with consumption (no idiosyncratic risk).  These assets receive the highest 
expected return. 
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You can reach any position on the efficient frontier if you have two assets on it. 
 
Any efficient portfolio carries all pricing information! 
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Mean-variance frontier Slope σ(m)/E(m) 

● ●Ri 
Idiosyncratic risk 

●
●
●

Some asset returns 



 6

Again, let u’(c) = c-γ, lognormal consumption growth. 
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Steep slope if economy is risky (consumption growth is volatile) and if consumers are 
very risk averse. 
 
 
Time-varying expected returns 
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Can have predictable returns as long as it is explained by changing expected consumption 
growth, changing covariance of return with consumption growth, or changing risk 
aversion. 
 
Present Value 
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